精英家教網 > 初中數學 > 題目詳情
如圖,等邊三角形ABC中,D、E分別為AB、BC邊上的兩動點,且總使AD=BE,AE與CD交于點F,AG⊥CD于點G,則
FG
AF
=(  )
分析:根據等邊三角形性質得出AC=AB,∠BAC=∠B=60°,證△ABE≌△CAD,推出∠BAE=∠ACD求出∠AFD=∠BAC=60°求出∠FAG=30°,即可求出答案.
解答:證明:∵△ABC是等邊三角形,
∴AC=AB,∠BAC=∠B=60°,
在△ABE和△CAD中
AB=AC
∠B=∠DAC
BE=AD

∴△ABE≌△CAD (SAS),
∴∠BAE=∠ACD,
∴∠AFD=∠CAE+∠ACD=∠CAE+∠BAE=∠BAC=60°,
∵AG⊥CD,
∴∠AGF=90°,
∴∠FAG=30°,
∴sin30°=
FG
AF
=
1
2

FG
AF
=
1
2
點評:本題考查了全等三角形的性質和判定等邊三角形性質,特殊角的三角函數值,含30度角的直角三角形性質的應用,主要考查學生的推理能力.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知:如圖,等邊三角形AOB的頂點A在反比例函數y=
3
x
(x>0)的圖象上,點B在x軸上.
(1)求點B的坐標;
(2)求直線AB的函數表示式;
(3)在y軸上是否存在點P,使△OAP是等腰三角形?若存在,直接把符合條件的點P的坐標都寫出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,等邊三角形ABC的邊長為6,點D,E分別在邊AB,AC上,且AD=AE=2.若點F從點B開始以每秒1個單位長的速度沿射線BC方向運動,設點F運動的時間為t秒.當t>0時,直線FD與過點A且平行于BC的直線相交于點G,GE的延長線與BC的延長線相交于點H,AB與GH相交于點O.
(1)設△EGA的面積為S,寫出S與t的函數關系式;
(2)當t為何值時,AB⊥GH.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,等邊三角形ABC的邊長為a,若D、E、F、G分別為AB、AC、CD、BF的中點,則△BEG的面積是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:013

已知:如圖,在等邊三角形AB,AD=BE=CF,D,E,F不是各邊的中點,AE,BF,CD分別交于P,M,N在每一組全等三角形中,有三個三角形全等,在圖中全等三角形的組數是

[    ]

A.5   B.4    C.3   D.2

 

查看答案和解析>>

同步練習冊答案