【題目】圖1是一個(gè)三角形,分別連接這個(gè)三角形的中點(diǎn)得到圖2;再分別連接圖2中間的小三角形的中點(diǎn),得到圖3,按此方法繼續(xù)下去,請你根據(jù)每個(gè)圖中三角形個(gè)數(shù)的規(guī)律,完成下面問題:

在第n個(gè)圖形中有個(gè)三角形(用含n的式子表示).

【答案】4n﹣3
【解析】解:分別數(shù)出圖1、圖2、圖3中的三角形的個(gè)數(shù),

圖1中三角形的個(gè)數(shù)為4×1﹣3=1;

圖2中三角形的個(gè)數(shù)為4×2﹣3=5;

圖3中三角形的個(gè)數(shù)為4×3﹣3=9;

可以發(fā)現(xiàn),第幾個(gè)圖形中三角形的個(gè)數(shù)就是4與幾的乘積減去3.

按照這個(gè)規(guī)律,如果設(shè)圖形的個(gè)數(shù)為n,那么其中三角形的個(gè)數(shù)為4n﹣3.

所以答案是:4n﹣3.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)與式的規(guī)律(先從圖形上尋找規(guī)律,然后驗(yàn)證規(guī)律,應(yīng)用規(guī)律,即數(shù)形結(jié)合尋找規(guī)律).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y= x2 x﹣9與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接BC、AC.

(1)求AB和OC的長;
(2)點(diǎn)E從點(diǎn)A出發(fā),沿x軸向點(diǎn)B運(yùn)動(dòng)(點(diǎn)E與點(diǎn)A、B不重合),過點(diǎn)E作直線l平行BC,交AC于點(diǎn)D.設(shè)AE的長為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時(shí),求出以點(diǎn)E為圓心,與BC相切的圓的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為線段上一點(diǎn),點(diǎn)的中點(diǎn),且,

(1)求的長

(2)若點(diǎn)在直線上,且,求的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,3),點(diǎn)B和點(diǎn)D的坐標(biāo)分別為(m,0),(n,4),且m>0,四邊形ABCD是矩形.
(1)如圖1,當(dāng)四邊形ABCD為正方形時(shí),求m,n的值;

(2)在圖2中,畫出矩形ABCD,簡要說明點(diǎn)C,D的位置是如何確定的,并直接用含m的代數(shù)式表示點(diǎn)C的坐標(biāo);

(3)探究:當(dāng)m為何值時(shí),矩形ABCD的對角線AC的長度最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AD=8cm,AB=6cm.動(dòng)點(diǎn)E從點(diǎn)C開始沿邊CB向點(diǎn)B以2cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)C同時(shí)出發(fā)沿邊CD向點(diǎn)D以1cm/s的速度運(yùn)動(dòng)至點(diǎn)D停止.如圖可得到矩形CFHE,設(shè)運(yùn)動(dòng)時(shí)間為x(單位:s),此時(shí)矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,AB=AC, D為直線BC上一動(dòng)點(diǎn)(不與B,C重合),在AD的右側(cè)作ADE,使得AE=AD,∠DAE=BAC,連接CE

1)當(dāng)D在線段BC上時(shí),求證:BAD CAE;

2)當(dāng)點(diǎn)D運(yùn)動(dòng)到何處時(shí),ACDE,并說明理由;

3)當(dāng)CEAB時(shí),若ABD中最小角為20°,直接寫出∠ADB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于O點(diǎn),OMAB;

(1)若∠1=∠2,求∠NOD;

(2)若∠1=BOC,求∠AOC與∠MOD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家節(jié)能減排的號(hào)召,鼓勵(lì)居民節(jié)約用電,各省市先后出臺(tái)了居民用電“階梯價(jià)格”制度,下表是某市的電價(jià)標(biāo)準(zhǔn)(每月).

階梯

一戶居民每月用電量x(單位:度)

電費(fèi)價(jià)格(單位:元/度)

一檔

0<x≤180

a

二檔

180<x≤280

b

三檔

x>280

0.82


(1)已知小華家四月份用電200度,繳納電費(fèi)105元;五月份用電230度,繳納電費(fèi)122.1元,請你根據(jù)以上數(shù)據(jù),求出表格中a,b的值;
(2)六月份是用電高峰期,小華家計(jì)劃六月份電費(fèi)支出不超過208元,那么小華家六月份最多可用電多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù) 同一直角坐標(biāo)系內(nèi)的圖象是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案