【題目】感知:解不等式 .根據(jù)兩數(shù)相除,同號得正,異號得負(fù),得不等式組 或不等式組 解不等式組 ,得 ;解不等式組 ,得 ,所以原不等式的解集為

1)探究:解不等式

2)應(yīng)用:不等式 的解集是

【答案】1-1x2;2-5≤x≤3

【解析】

1)先把不等式轉(zhuǎn)化為兩個不等式組,然后通過解不等式組來求分式不等式;

2)根據(jù)題意先把不等式轉(zhuǎn)化為兩個不等式組,然后通過解不等式組來求不等式.

1)根據(jù)題意原不等式可化為不等式組

或②{

解不等式組①,無解.

解不等式組②,得:1<x<2.

所以原不等式的解集為1<x<2.

2)應(yīng)用:原不等式可化為不等式組:

或②,

解不等式組①得:不等式組無解,

解不等式組②得:5x3.

故答案為:5x3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長線上,連接EA,EC.

(1)如圖1,若點(diǎn)P在線段AB的延長線上,求證:EA=EC;

(2)如圖2,若點(diǎn)P在線段AB的中點(diǎn),連接AC,判斷ACE的形狀,并說明理由;

(3)如圖3,若點(diǎn)P在線段AB上,連接AC,當(dāng)EP平分AEC時(shí),設(shè)AB=a,BP=b,求a:b及AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】推理計(jì)算:已知ABCD,∠B100°,EF平分∠BEC,EGEF,求∠BEG和∠DEG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)在線段上,在的同側(cè)作等腰和等腰,、分別交于點(diǎn).對于下列結(jié)論:

;.其中正確的是(

A. ①②③ B. C. ①② D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,HG=24cm,MG=8cm,MC=6cm,則陰影部分的面積是____cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】揚(yáng)州漆器名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30/件,每天銷售量(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.

(1)求之間的函數(shù)關(guān)系式;

(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤最大,最大利潤是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AEBC于點(diǎn)E,∠BAE:∠CAE46,BD平分∠ABC,點(diǎn)FBC上,∠CDF60°,∠ABD25°

1)求∠CAE的度數(shù);

2)求證:DFBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】射陽縣實(shí)驗(yàn)初中為了解全校學(xué)生上學(xué)期參加社區(qū)活動的情況,學(xué)校隨機(jī)調(diào)查了本校50名學(xué)生參加社區(qū)活動的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:

參加社區(qū)活動次數(shù)的頻數(shù)、頻率分布表

活動次數(shù)x

頻數(shù)

頻率

0x≤3

10

0.20

3x≤6

a

0.24

6x≤9

16

0.32

9x≤12

6

0.12

12x≤15

m

b

15x≤18

2

n

根據(jù)以上圖表信息,解答下列問題:

1)表中a=  ,b=  

2)請把頻數(shù)分布直方圖補(bǔ)充完整(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù));

3)若該校共有1200名學(xué)生,請估計(jì)該校在上學(xué)期參加社區(qū)活動超過6次的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ADABC邊上 BC上的中線,若 AD4,AC5,則 AB的取值范圍是___________

查看答案和解析>>

同步練習(xí)冊答案