精英家教網 > 初中數學 > 題目詳情

某工廠接受一批支援四川省汶川災區(qū)抗震救災帳蓬的生產任務.根據要求,帳篷的一個橫截面框架由等腰三角形和矩形組成(如圖所示).已知等腰△ABE的底角∠AEB=θ,且tanθ=,矩形BCDE的邊CD=2BC,這個橫截面框架(包括BE)所用的鋼管總長為15m.求帳篷的篷頂A到底部CD的距離.(結果精確到0.1m)

解:作AH⊥CD,垂足為H,交EB于點F

由矩形BCDE,得AH⊥BE ,
∵△ABE是等腰三角形,CD ="2" BC
∴點F為EB中點, EF="BF=BC=DE"
∵ tanθ=, ∴
設AF=3x,則EF=4x,∴AE=5x,BE=8x, ∴BC=4x.
∴AB+ BC+ CD+DE+ AE+ BE="5x+4x" +8x+4x+5x+8x = 15,
∴AH=7x=7×=≈3.1(m).            
答:篷頂A到底部CD的距離約為3.1m.

解析

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網某工廠接受一批支援四川省汶川災區(qū)抗震救災帳篷的生產任務.根據要求,帳篷的一個橫截面框架由等腰三角形和矩形組成(如圖所示).已知等腰△ABE的底角∠AEB=θ,且tanθ=
34
,矩形BCDE的邊CD=2BC,這個橫截面框架(包括BE)所用的鋼管總長為15m,求帳篷的篷頂A到底部CD的距離.(結果精確到0.1m)

查看答案和解析>>

科目:初中數學 來源: 題型:

某工廠接受一批支援四川省汶川災區(qū)抗震救災賬篷的生產任務.根據要求,賬篷的一個橫截面框架由等腰三角形和矩形組成(如圖所示).已知等腰三角形ABE的底角∠AEB=θ,且tanθ=
34
;矩形BCDE的邊CD=2BC,這個橫截面框架(包括BE)所用的鋼管總長為17m,求賬篷的篷頂A到底部CD的距離.

查看答案和解析>>

科目:初中數學 來源:2008年初中畢業(yè)升學考試(江蘇鹽城卷)數學(解析版) 題型:解答題

某工廠接受一批支援四川省汶川災區(qū)抗震救災帳蓬的生產任務.根據要求,帳篷的一個橫截面框架由等腰三角形和矩形組成(如圖所示).已知等腰△ABE的底角∠AEB=θ,且tanθ=,矩形BCDE的邊CD=2BC,這個橫截面框架(包括BE)所用的鋼管總長為15m.求帳篷的篷頂A到底部CD的距離.(結果精確到0.1m)

 

查看答案和解析>>

科目:初中數學 來源:2008年廣東省深圳市實驗中學高一直升考試數學試卷(解析版) 題型:解答題

某工廠接受一批支援四川省汶川災區(qū)抗震救災帳篷的生產任務.根據要求,帳篷的一個橫截面框架由等腰三角形和矩形組成(如圖所示).已知等腰△ABE的底角∠AEB=θ,且tanθ=,矩形BCDE的邊CD=2BC,這個橫截面框架(包括BE)所用的鋼管總長為15m,求帳篷的篷頂A到底部CD的距離.(結果精確到0.1m)

查看答案和解析>>

同步練習冊答案