【題目】已知:如圖,在正方形外取一點(diǎn),連接、、.過(guò)點(diǎn)的垂線交于點(diǎn).若,.下列結(jié)論:①;②點(diǎn)到直線的距離為;③;④;⑤;其中正確結(jié)論的序號(hào)是( )

A.①③④B.①②⑤C.③④⑤D.①③⑤

【答案】D

【解析】

①利用同角的余角相等,易得∠EAB=PAD,再結(jié)合已知條件利用SAS可證兩三角形全等;③利用①中的全等,可得∠APD=AEB,結(jié)合三角形的外角的性質(zhì),易得∠BEP=90°,即可證;②過(guò)BBFAE,交AE的延長(zhǎng)線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結(jié)合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;⑤在RtABF中,利用勾股定理可求AB2,即是正方形的面積;④連接BD,求出△ABD的面積,然后減去△BDP的面積即可.

①∵∠EAB+BAP=90°,PAD+BAP=90°,

∴∠EAB=PAD,

又∵AE=APAB=AD,

∴△APD≌△AEB(故①正確)

③∵△APD≌△AEB,

∴∠APD=AEB

又∵∠AEB=AEP+BEP,∠APD=AEP+PAE

∴∠BEP=PAE=90°,

EBED(故③正確);

②過(guò)BBFAE,交AE的延長(zhǎng)線于F,

AE=AP,EAP=90°,

∴∠AEP=APE=45°,

又∵③中EBEDBFAF,

∴∠FEB=FBE=45°,

又∵BE=,

BF=EF= (故②不正確);

④如圖,連接BD,在RtAEP中,

AE=AP=1,

EP=

又∵PB=,

BE=

∵△APD≌△AEB,

PD=BE=

S+S=SS=S×DP×BE=×(4) ××=+.(故④不正確).

⑤∵EF=BF=,AE=1

∴在RtABF,

S=AB=4+(故⑤正確);

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰,,平分,上一動(dòng)點(diǎn),作平行,交F,在上取一點(diǎn),使得,連接.

1)根據(jù)題意補(bǔ)全圖形;

2)求證四邊形是平行四邊形;

3)若,寫(xiě)出一個(gè)的度數(shù),使得四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖①,ABC是等邊三角形,點(diǎn)D是邊BC上任意一點(diǎn)(不與BC重合),點(diǎn)E在邊AC上,∠ADE=60°,∠BAD與∠CDE有怎樣的數(shù)量關(guān)系,并給予證明.

2)如圖②,在ABC中,AB=AC,點(diǎn)D是邊BC上一點(diǎn)(不與BC重合), ADE=B,點(diǎn)E在邊AC.CE=BD=3,BC=8,求AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形.RtABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(﹣4,1),點(diǎn)B的坐標(biāo)為(﹣1,1).

(1)先將RtABC向右平移5個(gè)單位,再向下平移1個(gè)單位后得到RtA1B1C1.試在圖中畫(huà)出圖形RtA1B1C1,并寫(xiě)出A1的坐標(biāo);

(2)將RtA1B1C1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)90°后得到RtA2B2C2,試在圖中畫(huà)出圖形RtA2B2C2.并計(jì)算RtA1B1C1在上述旋轉(zhuǎn)過(guò)程中C1所經(jīng)過(guò)的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,點(diǎn)E在AB上,F(xiàn)是線段BD的中點(diǎn),連接CE、FE.

(1)若AD=3,BE=4,求EF的長(zhǎng);

(2)求證:CE=EF;

(3)將圖1中的△AED繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AED的一邊AE恰好與△ACB的邊AC在同一條直線上(如圖2),連接BD,取BD的中點(diǎn)F,問(wèn)(2)中的結(jié)論是否仍然成立,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,BAC=60°,

(1)如果ABC角平分線BD、CE相交與點(diǎn)O,則∠BOC_________。

(2)如果ABC的高BD、CE相交與點(diǎn)O,求∠BOC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D在△ABC的邊BC上,DC=2BD,連接AD與△ABC的中線BE交于點(diǎn)F,連接CF,若△ABC的面積為24,則△AEF的面積為( )

A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行了文明在我身邊攝影比賽.已知每幅參賽作品成績(jī)記為 ().校方從600幅參賽作品中隨機(jī)抽取了部分參賽作品,統(tǒng)計(jì)了它們的成績(jī),并繪制了如下不完整的統(tǒng)計(jì)圖表.

根據(jù)以上信息解答下列問(wèn)題:

1)統(tǒng)計(jì)表中的值為;

2)補(bǔ)全頻數(shù)分布直方圖;

3)若80分以上(含80分)的作品將被組織展評(píng),試估計(jì)全校被展評(píng)的作品數(shù)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中,ABC為格點(diǎn)三角形(頂點(diǎn)都是格點(diǎn)),將ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到AB1C1

(1)在正方形網(wǎng)格中,作出AB1C1;(不要求寫(xiě)作法)

(2)設(shè)網(wǎng)格小正方形的邊長(zhǎng)為1cm,用陰影表示出旋轉(zhuǎn)過(guò)程中線段BC所掃過(guò)的圖形,然后求出它的面積.(結(jié)果保留π).

查看答案和解析>>

同步練習(xí)冊(cè)答案