(2008•岳陽)如圖是我市甲、乙兩戶地區(qū)居民全年各項支出的統(tǒng)計圖,根據(jù)統(tǒng)計圖,這兩戶居民在教育方面投入的百分比    大.(填”甲“、“乙”)
【答案】分析:根據(jù)題意結合圖中的數(shù)據(jù),分別計算:甲、乙兩戶在教育方面的投入的百分比,再進行比較.
解答:解:
由條形統(tǒng)計圖可知:甲戶在教育方面的投入的百分比為3000÷(3000+5300+3000+4600)×100%=18.9%;由扇形統(tǒng)計圖可以看出:乙戶在教育方面的投入的百分比25%>18.9%.
所以:這兩戶居民在教育方面投入的百分比乙戶的大.
點評:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵,條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《四邊形》(06)(解析版) 題型:解答題

(2008•岳陽)如圖,四邊形ABCD是一正方形,已知A(1,2),B(5,2)
(1)求點C,D的坐標;
(2)若一次函數(shù)y=kx-2(k≠0)的圖象過C點,求k的值.
(3)若y=kx-2的直線與x軸、y軸分別交于M,N兩點,且△OMN的面積等于2,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2008•岳陽)如圖,點E(-4,0),以點E為圓心,2為半徑的圓與x軸交于A、B兩點,拋物線y=x2+bx+c過點A和點B,與y軸交于C點.
(1)求拋物線的解析式;
(2)求出點C的坐標,并畫出拋物線的大致圖象;
(3)點Q(m,)(m<0)在拋物線y=x2+bx+c的圖象上,點P為此拋物線對稱軸上的一個動點,求PQ+PB的最小值;
(4)CF是圓E的切線,點F是切點,在拋物線上是否存在一點M,使△COM的面積等于△COF的面積?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《平面直角坐標系》(02)(解析版) 題型:解答題

(2008•岳陽)如圖,四邊形ABCD是一正方形,已知A(1,2),B(5,2)
(1)求點C,D的坐標;
(2)若一次函數(shù)y=kx-2(k≠0)的圖象過C點,求k的值.
(3)若y=kx-2的直線與x軸、y軸分別交于M,N兩點,且△OMN的面積等于2,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省內(nèi)江市二中中考數(shù)學一模試卷(解析版) 題型:解答題

(2008•岳陽)如圖,點E(-4,0),以點E為圓心,2為半徑的圓與x軸交于A、B兩點,拋物線y=x2+bx+c過點A和點B,與y軸交于C點.
(1)求拋物線的解析式;
(2)求出點C的坐標,并畫出拋物線的大致圖象;
(3)點Q(m,)(m<0)在拋物線y=x2+bx+c的圖象上,點P為此拋物線對稱軸上的一個動點,求PQ+PB的最小值;
(4)CF是圓E的切線,點F是切點,在拋物線上是否存在一點M,使△COM的面積等于△COF的面積?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖南省岳陽市中考數(shù)學試卷(解析版) 題型:解答題

(2008•岳陽)如圖,點E(-4,0),以點E為圓心,2為半徑的圓與x軸交于A、B兩點,拋物線y=x2+bx+c過點A和點B,與y軸交于C點.
(1)求拋物線的解析式;
(2)求出點C的坐標,并畫出拋物線的大致圖象;
(3)點Q(m,)(m<0)在拋物線y=x2+bx+c的圖象上,點P為此拋物線對稱軸上的一個動點,求PQ+PB的最小值;
(4)CF是圓E的切線,點F是切點,在拋物線上是否存在一點M,使△COM的面積等于△COF的面積?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案