精英家教網 > 初中數學 > 題目詳情
如圖,在平面直角坐標系xOy中,直線l1⊥x軸于點(1,0),直線l2⊥x軸于點(2,0),直線l3⊥x軸于點(3,0)…直線ln⊥x軸于點(n,0).函數y=x的圖象與直線l1,l2,l3,…ln分別交于點A1,A2,A3,…An,函數y=2x的圖象與直線l1,l2,l3,…ln分別交于點B1,B2,B3,…Bn.如果△OA1B1的面積記為S1,四邊形A1A2B2B1的面積記作S2,四邊形A2A3B3B2的面積記作S3,…四邊形An-1AnBnBn-1的面積記作Sn,那么S2011=   
【答案】分析:先求出A1,A2,A3,…An和點B1,B2,B3,…Bn的坐標,利用三角形的面積公式計算△OA1B1的面積;四邊形A1A2B2B1的面積,四邊形A2A3B3B2的面積,…四邊形An-1AnBnBn-1的面積,則通過兩個三角形的面積差計算,這樣得到Sn=n-,然后把n=2011代入即可.
解答:解:∵函數y=x的圖象與直線l1,l2,l3,…ln分別交于點A1,A2,A3,…An
∴A1(1,1),A2(2,2),A3(3,3)…An(n,n),
又∵函數y=2x的圖象與直線l1,l2,l3,…ln分別交于點B1,B2,B3,…Bn,
∴B1(1,2),B2(2,4),B3(3,6),…Bn(n,2n),
∴S1=•1•(2-1),
S2=•2•(4-2)-•1•(2-1),
S3=•3•(6-3)-•2•(4-2),

Sn=•n•(2n-n)-•(n-1)[2(n-1)-(n-1)]
=n2-(n-1)2
=n-
當n=2011,S2011=2011-=2010.5.
故答案為2010.5.
點評:本題考查了兩條直線交點坐標的求法:利用兩個圖象的解析式建立方程組,解方程組即可;也考查了三角形的面積公式以及梯形的面積公式.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數點(橫、縱坐標均為整數)中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案