【題目】1解方程: 3yy﹣1=2﹣2y

2如圖,△ABC中,CD是邊AB上的高,且.求∠ACB的大。

【答案】1,y2=1;(2) 90°

【解析】試題分析:

(1)根據(jù)本題特點(diǎn),用“因式分解法”解此方程即可;

2ABC中,CD是邊AB上的高,可得∠ADC=CDB=90°,結(jié)合 可證得:ADC∽△CDB,從而可得∠BCD=A,結(jié)合∠A+ACD=90°可得∠BCD+ACD=ACB=90°.

試題解析

1)方程整理得:3y(y-1)-2(y-1)=0

分解因式得:(3y-2(y-1)=0,

解得: ,y2=1.

(2)∴∠ADC=∠BDC=90°;
∵AD:CD=CD:BD
∴△ADC∽△CDB
∴∠ACD=∠B;
∵∠A+∠ACD=90°
∴∠A+∠B=90°,即∠ACB=90°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤(rùn)如下表:

(1)若工廠計(jì)劃獲利14萬(wàn)元,問A、B兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?

(2)若工廠投入資金不多于44萬(wàn)元,且獲利多于14萬(wàn)元,問工廠有哪幾種生產(chǎn)方案?

(3)(2)條件下,哪種方案獲利最大?并求最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在購(gòu)買某場(chǎng)足球門票時(shí),設(shè)購(gòu)買門票數(shù)為x(張),費(fèi)用為y(元).現(xiàn)有兩種購(gòu)買方案:

方案一:若單位費(fèi)助廣告費(fèi)10000元,則該單位所購(gòu)門票的價(jià)格為每張60元;(總費(fèi)用=廣告贊助費(fèi)+門票費(fèi))

方案二:購(gòu)買門票方式如圖所示.

解答下列問題:

1)方案一中,yx的函數(shù)關(guān)系式為 ;

方案二中,當(dāng)0x100時(shí),yx的函數(shù)關(guān)系式為 ;

當(dāng)x100時(shí),yx的函數(shù)關(guān)系式為 ;

2)如果購(gòu)買本場(chǎng)足球賽門票超過(guò)100張,你將選擇哪一種方案,使總費(fèi)用最省?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,矩形ABCDAB4,BC

1)直接寫出:ABD______度;

2)將矩形ABCD沿BD剪開得到兩個(gè)三角形,按圖2擺放:點(diǎn)A與點(diǎn)C重合,CD落在AD′上,直接寫出BDB′D′的關(guān)系:_____;

3)在圖2的基礎(chǔ)上將AB′D′向左平移,點(diǎn)B′B重合停止,設(shè)ACx,兩個(gè)三角形重合部分的封閉圖形的周長(zhǎng)為y,請(qǐng)用x表示y____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段、相交于,連結(jié)、,我們把形如圖的圖形稱之為字形,如圖,在圖的條件下,的平分線相交于點(diǎn),并且與、分別相交于,試解答下列問題:

(1)在圖中,請(qǐng)直接寫出、、、之間的數(shù)量關(guān)系:__________

(2)仔細(xì)觀察,在圖字形的個(gè)數(shù):______個(gè);

(3)中,當(dāng)度,度時(shí),求的度數(shù).

(4)為任意角時(shí),其它條件不變,試問、之間存在著怎樣的數(shù)量關(guān)系?(直接寫出結(jié)果,不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果店以4元/千克的價(jià)格購(gòu)進(jìn)一批水果,由于銷售狀況良好,該店又再次購(gòu)進(jìn)同一種水果,第二次進(jìn)貨價(jià)格比第一次每千克便宜了0.5元,所購(gòu)水果重量恰好是第一次購(gòu)進(jìn)水果重量的2倍,這樣該水果店兩次購(gòu)進(jìn)水果共花去了2200元.

(1)該水果店兩次分別購(gòu)買了多少元的水果?

(2)在銷售中,盡管兩次進(jìn)貨的價(jià)格不同,但水果店仍以相同的價(jià)格售出,若第一次購(gòu)進(jìn)的水果有3%的損耗,第二次購(gòu)進(jìn)的水果有5%的損耗,該水果店希望售完這些水果獲利不低于1244元,則該水果每千克售價(jià)至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AC,EC分別為正方形ABCD和正方形EFCG的對(duì)角線,點(diǎn)E在ABC內(nèi),連接BF,CAE+CBE=90°

1求證:CAE∽△CBF;

2若BE=1,AE=2,求CE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了維護(hù)國(guó)家主權(quán)和海洋權(quán)力,海監(jiān)部門對(duì)我國(guó)領(lǐng)海實(shí)現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時(shí)50海里的速度向正東方航行,在處測(cè)得燈塔在北偏東方向上,繼續(xù)航行1小時(shí)到達(dá)處,此時(shí)測(cè)得燈塔在北偏東方向上.

(1)求的度數(shù);

(2)已知在燈塔的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD 的邊長(zhǎng)為4,E AB 上一點(diǎn),且AE=3 ,F BC 邊上的一個(gè)動(dòng)點(diǎn),連接EF ,以EF 為邊向左側(cè)作等腰直角三角形FEG ,EG=EF,∠GEF=90°,連接AG ,則AG 的最小值為________________

查看答案和解析>>

同步練習(xí)冊(cè)答案