【題目】如圖,點P為拋物線y=x2上一動點.
(1)若拋物線y=x2是由拋物線y=(x+2)2﹣1通過圖象平移得到的,請寫出平移的過程;
(2)若直線l經(jīng)過y軸上一點N,且平行于x軸,點N的坐標(biāo)為(0,﹣1),過點P作PM⊥l于M.
①問題探究:如圖一,在對稱軸上是否存在一定點F,使得PM=PF恒成立?若存在,求出點F的坐標(biāo):若不存在,請說明理由.
②問題解決:如圖二,若點Q的坐標(biāo)為(1.5),求QP+PF的最小值.
【答案】(1)向上平移1個單位,再向右2個單位;(2)①(0,1),②5
【解析】(1)找到拋物線頂點坐標(biāo)即可找到平移方式.
(2)①設(shè)出點P坐標(biāo),利用PM=PF計算BF,求得F坐標(biāo);
②利用PM=PF,將QP+PF轉(zhuǎn)化為QP+QM,利用垂線段最短解決問題.
(1)∵拋物線的頂點為(﹣2,﹣1)
∴拋物線的圖象向上平移1個單位,再向右2個單位得到拋物線 的圖象.
(2)①存在一定點F,使得PM=PF恒成立.
如圖一,過點P作PB⊥y軸于點B
設(shè)點P坐標(biāo)為,
∴,
∵
∴ 中
∴OF=1
∴點F坐標(biāo)為(0,1)
②由①,PM=PF,
的最小值為 的最小值
當(dāng)Q、P、M三點共線時,QP+QM有最小值為點Q縱坐標(biāo)5.
∴QP+PF的最小值為5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程(組)解應(yīng)用題:
為順利通過國家義務(wù)教育均衡發(fā)展驗收,我市某中學(xué)配備了兩個多媒體教室,購買了筆記本電腦和臺式電腦共120臺,購買筆記本電腦用了7.2萬元,購買臺式電腦用了24萬元,已知筆記本電腦單價是臺式電腦單價的1.5倍,那么筆記本電腦和臺式電腦的單價各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校利用暑假進行田徑場的改造維修,項目承包單位派遣一號施工隊進場施工,計劃用40天時間完成整個工程:當(dāng)一號施工隊工作5天后,承包單位接到通知,有一大型活動要在該田徑場舉行,要求比原計劃提前14天完成整個工程,于是承包單位派遣二號與一號施工隊共同完成剩余工程,結(jié)果按通知要求如期完成整個工程.
(1)若二號施工隊單獨施工,完成整個工程需要多少天?
(2)若此項工程一號、二號施工隊同時進場施工,完成整個工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,點E.F在BC上,BE=CF,AB=DC,∠B=∠C.求證:∠A=∠D.
(2)已知如圖,在△ABC中,∠B=30°,∠C=45°,ABAC=2,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市民廣場地面鋪設(shè)地磚,決定采用黑白2種地磚,按如下方案鋪設(shè),首先在廣場中央鋪2塊黑色磚(如圖①),然后在黑色磚的四周鋪上白色磚(如圖②),再在白色磚的四周鋪上黑色磚(如圖③),再在黑色磚的四周鋪上白色磚(如圖④),這樣反復(fù)更換地磚的顏色,按照這種規(guī)律,直至鋪滿整個廣場,觀察下圖,解決下列問題.
(1)填表
圖形序號數(shù) | ① | ② | ③ | ④ | … |
地磚總數(shù)(包括黑白地磚) | 2 |
(2)按照這種規(guī)律第6個圖形一共用去地磚多少塊?
(3)按照這種規(guī)律第個圖形一共用去地磚多少塊?(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車廠計劃一周生產(chǎn)自行車1400輛,平均每天生產(chǎn)200輛,但由于種種原因,實際每天生產(chǎn)量與計劃量相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)記為正、減產(chǎn)記為負(fù)):
(1)根據(jù)記錄的數(shù)據(jù)可知該廠星期四生產(chǎn)自行車________ 輛;
(2)根據(jù)記錄的數(shù)據(jù)可知該廠本周實際生產(chǎn)自行車______輛;
(3)該廠實行每日計件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務(wù),則超過部分每輛另獎勵15元;少生產(chǎn)一輛另扣20元,那么該廠工人這一周的工資總額是多少?
(4)若將上面第(3)問中“實行每日計件工資制”改為“實行每周計件工資制”,其他條件不變,在此方式下這一周工人的工資與按日計件的工資哪一個更多?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥AC,CD、BE分別是△ABC的角平分線,AG∥BC,AG⊥BG,下列結(jié)論:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正確的結(jié)論有( 。﹤
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市在“元旦”期間對顧客實行優(yōu)惠,規(guī)定一次性購物優(yōu)惠辦法:
少于200元,不予優(yōu)惠;高于200元但低于500元時,九折優(yōu)惠;消費500元或超過500元時,其中500元部分給予九折優(yōu)惠,超過500元部分給予八折優(yōu)惠.根據(jù)優(yōu)惠條件完成下列任務(wù):
(1)王老師一次性購物600元,他實際付款多少元?
(2)若顧客在該超市一次性購物x元,當(dāng)x小于500但不小于200時,他實際付款0.9x,當(dāng)x大于或等于500元時,他實際付款多少元?(用含x的代數(shù)式表示)
(3)如果王老師兩次購物貨款合計820元,第一次購物的貨款為a元(200<a<300),用含a的式子表示王老師兩次購物實際付款多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com