如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)D為拋物線的頂點(diǎn),點(diǎn)E在拋物線上,點(diǎn)F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,
(1)求拋物線所對應(yīng)的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點(diǎn)C逆時針旋轉(zhuǎn)90°,點(diǎn)A對應(yīng)點(diǎn)為點(diǎn)G,問點(diǎn)G是否在該拋物線上?請說明理由.

(1)y=-x2+2x+3;(2)8;(3)點(diǎn)G不在該拋物線上.

解析試題分析:(1)在矩形OCEF中,已知OF、EF的長,先表示出C、E的坐標(biāo),然后利用待定系數(shù)法確定該函數(shù)的解析式.
(2)根據(jù)(1)的函數(shù)解析式求出A、B、D三點(diǎn)的坐標(biāo),以AB為底、D點(diǎn)縱坐標(biāo)的絕對值為高,可求出△ABD的面積.
(3)首先根據(jù)旋轉(zhuǎn)條件求出G點(diǎn)的坐標(biāo),然后將點(diǎn)G的坐標(biāo)代入拋物線的解析式中直接進(jìn)行判定即可.
(1)∵四邊形OCEF為矩形,OF=2,EF=3,
∴點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)E的坐標(biāo)為(2,3).
把x=0,y=3;x=2,y=3分別代入y=-x2+bx+c中,

解得,
∴拋物線所對應(yīng)的函數(shù)解析式為y=-x2+2x+3;
(2)∵y=-x2+2x+3=-(x-1)2+4,
∴拋物線的頂點(diǎn)坐標(biāo)為D(1,4),
∴△ABD中AB邊的高為4,
令y=0,得-x2+2x+3=0,
解得x1=-1,x2=3,
所以AB=3-(-1)=4,
∴△ABD的面積=×4×4=8;
(3)△AOC繞點(diǎn)C逆時針旋轉(zhuǎn)90°,CO落在CE所在的直線上,由(2)可知OA=1,
∴點(diǎn)A對應(yīng)點(diǎn)G的坐標(biāo)為(3,2),
當(dāng)x=3時,y=-32+2×3+3=0≠2,所以點(diǎn)G不在該拋物線上.
考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+4與x軸的一個交點(diǎn)為A(-2,0),與y軸的交點(diǎn)為C,對稱軸是x=3,對稱軸與x軸交于點(diǎn)B.
(1)求拋物線的函數(shù)表達(dá)式;
(2)經(jīng)過B,C的直線l平移后與拋物線交于點(diǎn)M,與x軸交于點(diǎn)N,當(dāng)以B,C,M,N為頂點(diǎn)的四邊形是平行四邊形時,求出點(diǎn)M的坐標(biāo);
(3)若點(diǎn)D在x軸上,在拋物線上是否存在點(diǎn)P,使得△PBD≌△PBC?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

實(shí)驗(yàn)數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間(時)的關(guān)系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).
(1)根據(jù)上述數(shù)學(xué)模型計算:
①喝酒后幾時血液中的酒精含量達(dá)到最大值?最大值為多少?
②當(dāng)=5時,y=45.求k的值.
(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知兩點(diǎn)A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點(diǎn)C.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)設(shè)弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點(diǎn)E,相等嗎?請證明你的結(jié)論;
(3)設(shè)點(diǎn)M為x軸負(fù)半軸上一點(diǎn),OM=AE,是否存在過點(diǎn)M的直線,使該直線與(1)中所得的拋物線的兩個交點(diǎn)到y(tǒng)軸的距離相等?若存在,求出這條直線對應(yīng)函數(shù)的解析式;若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線y=ax2+2x+c的頂點(diǎn)為A(―1,―4),與y軸交于點(diǎn)B,與x軸負(fù)半軸交于點(diǎn)C.

(1)求這條拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)P為第三象限內(nèi)拋物線上的一動點(diǎn),連接BC、PC、PB,求△BCP面積的最大值,并求出此時點(diǎn)P的坐標(biāo);
(3)點(diǎn)E為拋物線上的一點(diǎn),點(diǎn)F為x軸上的一點(diǎn),若四邊形ABEF為平行四邊形,請直接寫出所有符合條件的點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(11分)如圖,已知拋物線y=x2+bx+c經(jīng)過A(-1,0)、B(4,5)兩點(diǎn),過點(diǎn)B作BC⊥x軸,垂足為C.
(1)求拋物線的解析式;
(2)求tan∠ABO的值;
(3)點(diǎn)M是拋物線上的一個點(diǎn),直線MN平行于y軸交直線AB于N,如果以M、N、B、C為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)M的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線經(jīng)過A(,0),C(2,-3)兩點(diǎn),與y軸交于點(diǎn)D,與x軸交于另一點(diǎn)B.
(1)求此拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)若將此拋物線平移,使其頂點(diǎn)為點(diǎn)D,需如何平移?寫出平移后拋物線的解析式;
(3)過點(diǎn)P(m,0)作x軸的垂線(1≤m≤2),分別交平移前后的拋物線于點(diǎn)E,F(xiàn),交直線OC于點(diǎn)G,求證:PF=EG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在氣候?qū)θ祟惿鎵毫θ遮吋哟蟮慕裉,發(fā)展低碳經(jīng)濟(jì),全面實(shí)現(xiàn)低碳生活成為人們的共識,某企業(yè)采用技術(shù)革新,節(jié)能減排,經(jīng)分析前5個月二氧化碳排放量y(噸)與月份x(月)之間的函數(shù)關(guān)系是y=-2x+50.
(1)隨著二氧化碳排放量的減少,每排放一噸二氧化碳,企業(yè)相應(yīng)獲得的利潤也有所提高,且相應(yīng)獲得的利潤p(萬元)與月份x(月)的函數(shù)關(guān)系如圖所示,那么哪月份,該企業(yè)獲得的月利潤最大?最大月利潤是多少萬元?
(2)受國家政策的鼓勵,該企業(yè)決定從6月份起,每月二氧化碳排放量在上一個月的基礎(chǔ)上都下降a%,與此同時,每排放一噸二氧化碳,企業(yè)相應(yīng)獲得的利潤在上一個月的基礎(chǔ)上都增加50%,要使今年6、7月份月利潤的總和是今年5月份月利潤的3倍,求a的值(精確到個位).
(參考數(shù)據(jù):=7.14,=7.21,=7.28,=7.35)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

平面直角坐標(biāo)中,對稱軸平行于y軸的拋物線經(jīng)過原點(diǎn)O,其頂點(diǎn)坐標(biāo)為(3,);Rt△ABC的直角邊BC在x軸上,直角頂點(diǎn)C的坐標(biāo)為(,0),且BC=5,AC=3(如圖1).

圖1                             圖2
(1)求出該拋物線的解析式;
(2)將Rt△ABC沿x軸向右平移,當(dāng)點(diǎn)A落在(1)中所求拋物線上時Rt△ABC停止移動.D(0,4)為y軸上一點(diǎn),設(shè)點(diǎn)B的橫坐標(biāo)為m,△DAB的面積為s.
①分別求出點(diǎn)B位于原點(diǎn)左側(cè)、右側(cè)(含原點(diǎn)O)時,s與m之間的函數(shù)關(guān)系式,并寫出相應(yīng)自變量m的取值范圍(可在圖1、圖2中畫出探求);
②當(dāng)點(diǎn)B位于原點(diǎn)左側(cè)時,是否存在實(shí)數(shù)m,使得△DAB為直角三角形?若存在,直接寫出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案