精英家教網 > 初中數學 > 題目詳情
如圖,邊長為1的菱形ABCD繞點A旋轉,當B、C兩點恰好落在扇形AEF的弧EF上時,弧BC的長度等于( )

A.
B.
C.
D.
【答案】分析:連接AC,根據題意可得△ABC為等邊三角形,從而可得到∠A的度數,再根據弧長公式求得弧BC的長度.
解答:解:連接AC,可得AB=BC=AC=1,則∠BAC=60°,根據弧長公式,可得
弧BC的長度等于=,故選C.
點評:此題主要考查菱形、等邊三角形的性質以及弧長公式的理解及運用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,邊長為4的菱形ABCD中,∠DAB=60°,E是AD上的動點(與A,D不重合),F是CD上的動點,且AE+CF=4.
(1)求證:不論點E,F的位置如何變化,△BEF是正三角形;
(2)設AE=x,△BEF的面積是S,求S與x的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,邊長為1的菱形ABCD中,∠DAB=60度.連接對角線AC,以AC為邊作第二個菱形ACC1D1,使∠D1AC=60°;連接AC1,再以AC1為邊作第三個菱形AC1C2D2,使∠D2AC1=60°;…,按此規(guī)律所作的第n個菱形的邊長為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,邊長為1的菱形ABCD繞點A旋轉,當B、C兩點恰好落在扇形AEF的弧EF上時,弧BC的長度等于( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•普陀區(qū)二模)如圖,邊長為1的菱形ABCD的兩個頂點B、C恰好落在扇形AEF的弧EF上時,弧BC的長度等于
π
3
π
3
(結果保留π).

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•牡丹江)如圖,邊長為1的菱形ABCD中,∠DAB=60°.連結對角線AC,以AC為邊作第二個菱形ACEF,使∠FAC=60°.連結AE,再以AE為邊作第三個菱形AEGH使∠HAE=60°…按此規(guī)律所作的第n個菱形的邊長是
3
n-1
3
n-1

查看答案和解析>>

同步練習冊答案