如圖,在平面直角坐標系中,以點0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點,過點B作⊙O′的切線,交y軸于點C,過點0′作x軸的垂線MN,垂足為D,一條拋物線(對稱軸與y軸平行)經(jīng)過A、B兩點,且頂點在直線BC上.
(1)求直線BC的解析式;
(2)求拋物線的解析式;
(3)設拋物線與y軸交于點P,在拋物線上是否存在一點Q,使四邊形DBPQ為平行四邊形?若存在,請求出點Q的坐標;若不存在,請說明理由.
(1)連接O′B
∵O′(-2,-3),MN過點O′且與x軸垂直
∴O′D=3,OD=2,AD=BD=
1
2
AB
∵⊙O′的半徑為5
∴BD=AD=4
∴OA=6,OB=2
∴點A、B的坐標分別為(-6,0)、(2,0)
∵BC切⊙O′于B
∴O′B⊥BC
∴∠OBC+∠O′BD=90°
∵∠O′BD+∠BO′D=90°
∴∠OBC=∠BO′D
∵∠BOC=∠BDO′=90°
∴△BOC△O′DB
OB
O′D
=
OC
BD

∴OC=
OB•BD
O′D
=
2×4
3
=
8
3

∴點C的坐標為(0,
8
3

設直線BC的解析式為y=kx+b
b=
8
3
2k+b=0

解得
k=-
4
3
b=
8
3

∴直線BC的解析式為y=-
4
3
x+
8
3
;

(2)由圓和拋物線的對稱性可知MN是拋物線的對稱軸,
∴拋物線頂點的橫坐標為-2
∵拋物線的頂點在直線y=-
4
3
x+
8
3

∴y=
16
3
即拋物線的頂點坐標為(-2,
16
3

設拋物線的解析式為y=a(x+6)(x-2)
16
3
=a(-2+6)(-2-2)
解得a=-
1
3

∴拋物線的解析式為y=-
1
3
(x+6)(x-2)=-
1
3
x2-
4
3
x+4;

(3)由(2)得拋物線與y軸的交點P的坐標為(0,4),
若四邊形DBPQ是平行四邊形,
則有BDPQ,BD=PQ,
∴點Q的縱坐標為4
∵BD=4
∴PQ=4
∴點Q的橫坐標為-4
∴點Q的坐標為(-4,4)
∴當x=-4時,y=-
1
3
x2-
4
3
x+4=-
1
3
×16+
16
3
+4=4
∴點Q在拋物線上
∴在拋物線上存在一點Q(-4,4),使四邊形DBPQ為平行四邊形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,在平面直角坐標系中,AB、CD都垂直于x軸,垂足為B、D,且AD與BC相交于E點.已知:A(-2,-6),C(1,-3)
(1)求證:E點在y軸上;
(2)如果AB的位置不變,而DC水平向右移動K(K>0)個單位,此時AD與BC相交于E′點,如圖②,求△AE′C的面積S關于K的函數(shù)解析式;
(3)過A、E、E′三點的拋物線中,是否存在一條拋物線,它的頂點在x軸上?若存在,請求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=kx+b,與拋物線y=ax2交于A(1,m),B(-2,4)+y軸交與點C.
(1)求拋物線的解析式;
(2)求S△AOB;
(3)求
BC
AC
的值;
(4)判斷點A是否在以BO為直徑的圓上?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=-x2+bx+c與x軸負半軸交于點A,與y軸正半軸交于點B,且OA=OB.
(1)求b+c的值;
(2)若點C在拋物線上,且四邊形OABC是平行四邊形,求拋物線的解析式;
(3)在(2)條件下,點P(不與A、C重合)是拋物線上的一點,點M是y軸上一點,當△BPM是等腰直角三角形時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點A的坐標為(7,0),點B的坐標為(3,4),
(1)求經(jīng)過O、A、B三點的拋物線解析式;
(2)將線段AB繞A點順時針旋轉(zhuǎn)75°至AC,直接寫出點C的坐標;
(3)在y軸上找一點P,第一象限找一點Q,使得以O、B、Q、P為頂點的四邊形是菱形,求出點Q的坐標;
(4)△OAB的邊OB上有一動點M,過M作MNOA交AB于N,將△BMN沿MN翻折得△DMN.設MN=x,△DMN與△OAB重疊部分的面積為y,求出y與x之間的函數(shù)關系式,并求出重疊部分面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一家電腦公司推出一款新型電腦,投放市場以來的利潤情況可以看做是拋物線的一部分,請結合下面的圖象解答以下問題:
(1)求該拋物線對應的二次函數(shù)的解析式;
(2)該公司在經(jīng)營此款電腦過程中,第幾個月的利潤最大,最大利潤是多少;
(3)若照此經(jīng)營下去,請你結合所學的知識,對公司在此款電腦的經(jīng)營狀況(是否虧損何時虧損)作出預測.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖一次函數(shù)y=
1
2
x+1的圖象與x軸交于點A,與y軸交于點B;二次函數(shù)y=
1
2
x2+bx+c的圖象與一次函數(shù)y=
1
2
x+1的圖象交于B、C兩點,與x軸交于D、E兩點且D點坐標為(1,0).
(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上是否存在點P,使得△PBC是以P為直角頂點的直角三角形?若存在,求出所有的點P,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一直線y1=x+b與拋物線y2=x2+c的交點為A(3,5)和B.
(1)求出b、c和點B的坐標;
(2)畫出草圖,根據(jù)圖象同答:當x在什么范圍時y1≤y2?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線AB、CD分別經(jīng)過點(0,1)和(0,2)且平行于x軸,圖1中射線OA為正比例函數(shù)y=kx(k>0)在第一象限的部分圖象,射線OB與OA關于y軸對稱;圖2為二次函數(shù)y=ax2(a>0)的圖象.
(1)如圖l,求證:
AB
CD
=
1
2
;
(2)如圖2,探索:
AB
CD
的值.

查看答案和解析>>

同步練習冊答案