精英家教網 > 初中數學 > 題目詳情
21、如圖,已知△ABC是等邊三角形,D為邊AC的中點,AE⊥EC,BD=EC,
(1)說明△BCD與△CAE全等的理由;
(2)請判斷△ADE的形狀,并說明理由.
分析:(1)首先可由等邊三角形的性質得知BD和AC垂直,且D點是AC的中點,又∠BCD=60°,再由直角三角形性質不難推出△BDC和△ACE全等.
(2)由(1)的全等三角形得知∠EAC=60°,便可得△ADE為等邊三角形.
解答:解:(1)∵△ABC是等邊三角形
∴AB=BC=AC,∠ACB=60°(1分)
又∵D為AC中點
∴BD⊥AC,AD=CD(2分)
又∵AE⊥EC
∴∠BDC=∠AEC=Rt∠(3分)
又∵BD=CE
∴Rt△BDC≌Rt△CEA;(4分)

(2)∵Rt△BDC≌Rt△CEA
∴∠EAC=∠ACB=60°,AE=CD(6分)
又∵AD=CD
∴AD=AE(7分)
∴△ADE是等邊三角形.(8分)
點評:本題主要考查了等邊三角形和直角三角形的性質,能夠活學活用是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知△ABC是邊長為4的正三角形,AB在x軸上,點C在第一象限,AC與y軸交于點D,點A精英家教網的坐標為(-1,0).
(1)寫出B,C,D三點的坐標;
(2)若拋物線y=ax2+bx+c經過B,C,D三點,求此拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知△ABC是等邊三角形,AB交⊙O于點D,DE⊥AC于點E.
(1)求證:DE為⊙O的切線.
(2)已知DE=3,求:弧BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知△ABC是等邊三角形,E是AC延長線上一點,選擇一點D,使得△CDE是等邊三角形,如果M是線段AD的中點,N是線段BE的中點,
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點D是BC延長線上的一個動點,以AD為邊作等邊△ADE,過點E作BC的平行線,分別交AB,AC的延長線于點F,G,聯結BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案