【題目】如圖,在矩形ABCD中,對(duì)角線BD的垂直平分線MN與AD相交于點(diǎn)M,與BD相交于點(diǎn)O,與BC相交于點(diǎn)N,連接BM、DN.

(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求菱形BMDN的面積和對(duì)角線MN的長(zhǎng).

【答案】
(1)

證明:∵四邊形ABCD是矩形,

∴AD∥BC,∠A=90°,

∴∠MDO=∠NBO,∠DMO=∠BNO,

在△DMO和△BNO中,

,

∴△DMO≌△BNO(ASA),

∴OM=ON,

∵OB=OD,

∴四邊形BMDN是平行四邊形,

∵M(jìn)N⊥BD,

∴平行四邊形BMDN是菱形.


(2)

解:∵四邊形BMDN是菱形,

∴MB=MD,

設(shè)MD長(zhǎng)為x,則MB=DM=x,

在Rt△AMB中,BM2=AM2+AB2

即x2=(8﹣x)2+42,

解得:x=5,

即MD=5.

菱形BMDN的面積=MDAB=5×4=20,

∵BD= =4 ,

∵菱形BMDN的面積= BDMN=20,

∴MN=2× =2


【解析】(1)根據(jù)矩形性質(zhì)求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,證△DMO≌△BNO,推出OM=ON,得出平行四邊形BMDN,推出菱形BMDN;(2)根據(jù)菱形性質(zhì)求出DM=BM,在Rt△AMB中,根據(jù)勾股定理得出BM2=AM2+AB2 , 推出x2=x2﹣32x+256+64,求出MD,菱形BMDN的面積=MDAB,即可得出結(jié)果;菱形BMDN的面積=兩條對(duì)角線長(zhǎng)積的一半,即可求出MN的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】考試前,同學(xué)們總會(huì)采用各種方式緩解考試壓力,以最佳狀態(tài)迎接考試.某校對(duì)該校九年級(jí)的部分同學(xué)做了一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),學(xué)校將減壓方式分為五類(lèi),同學(xué)們可根據(jù)自己的情況必選且只選其中一類(lèi).學(xué)校收集整理數(shù)據(jù)后,繪制了圖1和圖2兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中信息解答下列問(wèn)題:

(1)這次抽樣調(diào)查中,一共抽查了多少名學(xué)生?
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“享受美食”所對(duì)應(yīng)扇形的圓心角的度數(shù);
(4)根據(jù)調(diào)查結(jié)果,估計(jì)該校九年級(jí)500名學(xué)生中采用“聽(tīng)音樂(lè)”來(lái)減壓方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一個(gè)四邊形紙片ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點(diǎn)B落在AD邊上的B'點(diǎn),AE是折痕。

(1)試判斷B'E與DC的位置關(guān)系并說(shuō)明理由。

(2)如果∠C=130°,求∠AEB的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B沿折線BE﹣ED﹣DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q從點(diǎn)B沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是1cm/s.若點(diǎn)P,Q同時(shí)開(kāi)始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)關(guān)系圖象如圖2,有下列四個(gè)結(jié)論:①AE=6cm;②sin∠EBC= ;③當(dāng)0<t≤10時(shí),y= t2; ④當(dāng)t=12s時(shí),△PBQ是等腰三角形.其中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)被平均分成3個(gè)扇形,分別標(biāo)有1、2、3三個(gè)數(shù)字,小王和小李各轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)為一次游戲,當(dāng)每次轉(zhuǎn)盤(pán)停止后,指針?biāo)干刃蝺?nèi)的數(shù)為各自所得的數(shù),一次游戲結(jié)束得到一組數(shù)(若指針指在分界線時(shí)重轉(zhuǎn)).

(1)請(qǐng)你用樹(shù)狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;
(2)兩次轉(zhuǎn)盤(pán),第一次轉(zhuǎn)得的數(shù)字記為m,第二次記為n,A的坐標(biāo)為(m,n),則A點(diǎn)在函數(shù)y= 上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△OAB如圖放置,點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)P是AB邊上的一點(diǎn),過(guò)點(diǎn)P的反比例函數(shù) 與OA邊交于點(diǎn)E,連接OP.

(1)如圖1,若點(diǎn)B的坐標(biāo)為(5,0),且△OPB的面積為 ,求反比例函數(shù)的解析式;
(2)如圖2,過(guò)P作PC∥OA,與OB交于點(diǎn)C,若 ,并且△OPC的面積為 ,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在函數(shù)y=﹣ (x<0)的圖象上,點(diǎn)B在函數(shù)y= (x>0)的圖象上,點(diǎn)C在x軸上.若四邊形OABC為平行四邊形,則△OBC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)0是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α,OC=CD,

∠DOC=60°連接OD.

1)求證:△COD是等邊三角形

2)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由

3)探究:當(dāng)α為多少度時(shí),△AOD是等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,OP∠MON的平分線,請(qǐng)你利用該圖形畫(huà)一對(duì)以OP所在直線為對(duì)稱(chēng)軸的全等三角形,并將添加的全等條件標(biāo)注在圖上.

請(qǐng)你參考這個(gè)作全等三角形的方法,解答下列問(wèn)題:

(1)如圖2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC∠BCA的平分線,AD、CE相交于點(diǎn)F,求∠EFA的度數(shù);

(2)在(1)的條件下,請(qǐng)判斷FEFD之間的數(shù)量關(guān)系,并說(shuō)明理由;

(3)如圖3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他條件不變,試問(wèn)在(2)中所得結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案