【題目】甲乙兩位同學利用燈光下的影子來測量一路燈A的高度,如圖,當甲走到點C處時,乙測得甲直立身高CD與其影子長CE正好相等,接著甲沿BC方向繼續(xù)向前走,走到點E處時,甲直立身高EF的影子恰好是線段EG,并測得EG=2.5m.已知甲直立時的身高為1.75m,求路燈的高AB的長.(結(jié)果精確到0.1m)

【答案】解:如圖,設(shè)AB= x,

由題意知AB⊥BG,CD⊥BG,F(xiàn)E⊥BG,CD=CE,

∴AB∥CD∥EF,∴BE=AB=x,

∴△ABG∽△FEC

,即 ,

m

答:路燈高AB約為5.8米.


【解析】利用平行得相似,因為AB,CD,EF都垂直于水平面,所以AB∥CD∥EF,所以有△ABG∽△FEC,得相似后對應邊成比例即可求出AB的長。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:拋物線y=x2+(2m-1)x+m2-1經(jīng)過坐標原點,且當x<0時,y隨x的增大而減小.
(1)求拋物線的解析式;
(2)結(jié)合圖象寫出y<0時,對應的x的取值范圍;
(3)設(shè)點A是該拋物線上位于x軸下方的一個動點,過點A作x軸的平行線交拋物線于另一點D,再作AB⊥x軸于點B,DC⊥x軸于點C.當BC=1時,直接寫出矩形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊△ABC中.

1)如圖1P,QBC邊上兩點,AP=AQ,∠BAP=20°,求∠AQB的度數(shù);

2)點PQBC邊上的兩個動點(不與B,C重合),點P在點Q的左側(cè),且AP=AQ,點Q關(guān)于直線AC的對稱點為M,連接AM,PM

①依題意將圖2補全;

②求證:PA=PM

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有2個,若從中隨機摸出一個球,這個球是白球的概率為
(1)求袋子中白球的個數(shù);(請通過列式或列方程解答)
(2)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列語句錯誤的有

①近似數(shù)0.010精確到千分位

②如果兩個角互補,那么一個是銳角,一個是鈍角

③若線段,則P一定是AB中點

AB兩點間的距離是指連接A、B兩點間的線段

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,點A(0,0)、B(4 ,0)、C(0,4),在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1個△AA1B1 , 第2個△B1A2B2 , 第3個△B2A3B3 , …則第2017個等邊三角形的邊長等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】滴滴打車為市民的出行帶來了很大的方便,小亮調(diào)查了若干市民一周內(nèi)使用滴滴打車的時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖,請根據(jù)圖中信息,解答下列問題:
(1)這次被調(diào)查的總?cè)藬?shù)是多少?
(2)試求表示C組的扇形圓心角的度數(shù),并補全條形統(tǒng)計圖;
(3)若全市的總?cè)藬?shù)為666萬,試求全市一周內(nèi)使用滴滴打車超過20分鐘的人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y= x2+bx+c過點A(0,﹣6)、B(﹣2,0),與x軸的另一交點為點C.

(1)求此拋物線的解析式;
(2)將直線AC向下平移m個單位,使平移后的直線與拋物線有且只有一個公共點M,求m的值及點M的坐標;
(3)拋物線上是否存在點P,使△PAC為直角三角形?若存在,請直接寫出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1(xy)22x(xy)     2(a1)(a1)(a1)2;

3)先化簡,再求值:

(x2y)(x2y)(2x3y4x2y2)÷2xy,其中x=3,.

查看答案和解析>>

同步練習冊答案