【題目】如圖,AD是∠BAC平分線,點E在AB上,且AE=AC,EF∥BC交AC于點F,AD與CE交于點G,與EF交于點H.
(1)證明:AD垂直平分CE;
(2)若∠BCE=40°,求∠EHD的度數(shù).
【答案】(1)見解析;(2)50°.
【解析】
(1)根據(jù)等腰三角形三線合一的性質(zhì)可得出結(jié)論;(2)由(1)可知點D為CE垂直平分線上的點,則CD=DE,∠DCE=∠DEC.由EF∥BC,可得EG平分∠DEF;由EG⊥AD,可證∠EDH=∠EHD,根據(jù)內(nèi)角和定理,即可得出結(jié)論.
解:(1)∵AE=AC,AD是∠BAC平分線,
∴AD垂直平分CE;
(2)由(1)可知點D為CE垂直平分線上的點,
∴CD=DE,
∴∠DCE=∠DEC.
∵EF∥BC,
∴∠DCE=∠CEF=∠DEC,
∴EG平分∠DEF.
∵EG⊥AD,EG=EG,
∴△DEG≌△HEG(ASA),
∴△DEH是等腰三角形,且ED=EH,
∴∠EDH=∠EHD,
∵∠BCE=40°,
∴∠DEH=2∠BCE=80°,
∴∠EHD=(180°﹣80°)=50°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表: 身高情況分組表(單位:cm)
組別 | 身高 |
A | x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | x≥170 |
根據(jù)圖表提供的信息,回答下列問題:
(1)樣本中,男生的身高眾數(shù)在組,中位數(shù)在組;
(2)樣本中,女生身高在E組的人數(shù)有人;
(3)已知該校共有男生400人,女生380人,請估計身高在160≤x<170之間的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛貨車從倉庫O出發(fā)在東西街道上運(yùn)送水果,規(guī)定向東為正方向,一次到達(dá)的5個銷售地點依次分別為A,B,C,D,E,最后回到倉庫O,貨車行駛的記錄(單位:千米)如下:+1,+3,﹣6,﹣1,﹣2,+5.請問:
(1)請以倉庫O為原點,向東為正方向,選擇適當(dāng)?shù)膯挝婚L度,畫出數(shù)軸,并標(biāo)出A,B,C,D,E的位置;
(2)試求出該貨車共行駛了多少千米?
(3)如果貨車運(yùn)送的水果以100千克為標(biāo)準(zhǔn)重量,超過的千克數(shù)記為正數(shù),不足的千克數(shù)記為負(fù)數(shù),則運(yùn)往A,B,C,D,E五個地點的水果重量可記為:
+50,﹣15,+25,﹣10,﹣15,則該貨車運(yùn)送的水果總重量是多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖像與x軸、軸分別交于點A、B,且BC∥AO,梯形AOBC的面積為10.
(1)求點A、B、C的坐標(biāo);
(2)求直線AC的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,E,F(xiàn)是對角線AC上的兩點且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四邊形EBFD為平行四邊形;⑤S△ADE=S△ABE;⑥AF=CE這些結(jié)論中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P為四邊形ABCD邊上的任意一點,當(dāng)∠BPC=30°時,CP的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB分別與⊙O相切于點A、B,點M在PB上,且OM∥AP,MN⊥AP,垂足為N.
(1)求證:OM=AN;
(2)若⊙O的半徑R=3,PA=9,求OM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.
某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.
思路:(1) 作AD⊥BC于D,設(shè)BD = x,用含x的代數(shù)式表示CD;(2)根據(jù)勾股定理,利用AD作為“橋梁”,建立方程模型,求出x;(3)利用勾股定理求出AD的長,再計算三角形面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com