【題目】一副直角三角板如圖放置,點(diǎn)A在ED上,∠F=∠ACB=90°,∠E=30°,∠B=45°,AC=12,試求BD的長(zhǎng).
【答案】解:∵在Rt△ABC中,∠ACB=90°,∠B=45°, ∴BC=AC=12.
∵在Rt△ACD中,∠ACD=90°,∠ADC=90°﹣∠E=60°,
∴CD= =4 ,
∴BD=BC﹣DC=12﹣4
【解析】先解Rt△ABC,由∠ACB=90°,∠B=45°,得出BC=AC=12.再解Rt△ACD,求出∠ADC=90°﹣∠E=60°,根據(jù)三角函數(shù)定義得到CD= =4 ,那么BD=BC﹣DC=12﹣4 .
【考點(diǎn)精析】根據(jù)題目的已知條件,利用解直角三角形的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有這樣一個(gè)問(wèn)題:探究函數(shù)y= x2+ 的圖象與性質(zhì).
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y= x2+ 的圖象與性質(zhì)進(jìn)行了探究.
下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)y= x2+ 的自變量x的取值范圍是
(2)下表是y與x的幾組對(duì)應(yīng)值.
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | … | ||
y | … | ﹣ | ﹣ | ﹣ | m | … |
求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(1, ),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(一條即可) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀.拋物線兩端點(diǎn)與水面的距離都是1m,拱橋的跨度為10cm.橋洞與水面的最大距離是5m.橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).求:
(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.
(1)求證:△ABC≌△ADE;
(2)求∠FAE的度數(shù);
(3)求證:CD=2BF+DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課堂上學(xué)習(xí)了勾股定理后,知道“勾三、股四、弦五”.王老師給出一組數(shù)讓學(xué)生觀察:3、4、5;5、12、13;7、24、25;9、40、41;…,學(xué)生發(fā)現(xiàn)這些勾股 數(shù)的勾都是奇數(shù),且從 3 起就沒(méi)有間斷過(guò),于是王老師提出以下問(wèn)題讓學(xué)生解決.
(1)請(qǐng)你根據(jù)上述的規(guī)律寫出下一組勾股數(shù):11、________、________;
(2)若第一個(gè)數(shù)用字母a(a為奇數(shù),且a≥3)表示,那么后兩個(gè)數(shù)用含a的代數(shù)式分別怎么表示?小明發(fā)現(xiàn)每組第二個(gè)數(shù)有這樣的規(guī)律4=,12=,24=……,于是他很快表示了第二數(shù)為 ,則用含a的代數(shù)式表示第三個(gè)數(shù)為________;
(3)用所學(xué)知識(shí)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在矩形ABCD中,AB=a,BC=b,點(diǎn)E是線段AD邊上的任意一點(diǎn)(不含端點(diǎn)A、D),連接BE、CE.
若a=5,sin∠ACB= ,解答下列問(wèn)題:
(1)填空:b=;
(2)當(dāng)BE⊥AC時(shí),求出此時(shí)AE的長(zhǎng);
(3)設(shè)AE=x,試探索點(diǎn)E在線段AD上運(yùn)動(dòng)過(guò)程中,使得△ABE與△BCE相似時(shí),請(qǐng)寫x、a、b三者的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和爸爸周末步行去游泳館游冰,爸爸先出發(fā)了一段時(shí)間后小明才出發(fā),途中小明在離家1400米處的報(bào)亭休息了一段時(shí)間后繼續(xù)按原來(lái)的速度前往游泳館.兩人離家的距離y(米)與小明所走時(shí)間x(分鐘)之間的函數(shù)關(guān)系如圖所示,請(qǐng)結(jié)合圖象信息解答下列問(wèn)題:
(1)小明出發(fā)_____分鐘后第一次與爸爸相遇;
(2)分別求出爸爸離家的距離y1和小明到達(dá)報(bào)亭前離家的距離y2與時(shí)間x之間的函數(shù)關(guān)系式;
(3)求小明在報(bào)亭休息了多長(zhǎng)時(shí)間遇到姍姍來(lái)遲的爸爸;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)得到的,連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF;
(2)當(dāng)四邊形ABDF為菱形時(shí),求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)戶種植一種經(jīng)濟(jì)作物,總用水量y(m3)與種植時(shí)間x(天)之間的函數(shù)關(guān)系如圖所示.
(1)第20天的總用水量為 m3;
(2)當(dāng)x≥20時(shí),求y與x之間的函數(shù)表達(dá)式;
(3)種植時(shí)間為多少天時(shí),總用水量達(dá)到7 000 m3.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com