【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連接AO并延長(zhǎng)交⊙O于點(diǎn)E,連接EB.若AB=8,CD=2.

(1) 求⊙O半徑OA的長(zhǎng);

(2) EB的長(zhǎng).

【答案】(1)5;(2)6

【解析】(1)O的半徑OD⊥弦AB于點(diǎn)C,AB=8,根據(jù)垂徑定理得到AC=AB=4,設(shè)⊙O的半徑為r,則OC=r-2,在RtAOC中,根據(jù)勾股定理即可求出求⊙O半徑OA的長(zhǎng);

(2)AE是⊙O的直徑,根據(jù)圓周角定理得到∠ABE=90°,在RtABE中,用勾股定理即可求得EB的長(zhǎng).

(1)∵⊙O的半徑OD⊥弦AB于點(diǎn)C,AB=8,

AC=AB=4,

設(shè)⊙O的半徑為r,則OC=r-2,

RtAOC中,

AC=4,OC=r-2,

OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,

∴⊙O半徑OA的長(zhǎng)為5.

(2)AE是⊙O的直徑,

∴∠ABE=90°,

RtABE中,

AE=10,AB=8,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究

如圖,拋物線y=﹣x2+2x+6與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,其對(duì)稱軸與拋物線交于點(diǎn)D.與x軸交于點(diǎn)E.

(1)求點(diǎn)A,B,D的坐標(biāo);

(2)點(diǎn)G為拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),從點(diǎn)D出發(fā),沿直線DE以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)C作x軸的平行線交拋物線于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊).

設(shè)點(diǎn)G的運(yùn)動(dòng)時(shí)間為ts.

①當(dāng)t為何值時(shí),以點(diǎn)M,N,B,E為頂點(diǎn)的四邊形是平行四邊形;

②連接BM,在點(diǎn)G運(yùn)動(dòng)的過(guò)程中,是否存在點(diǎn)M.使得∠MBD=∠EDB,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)點(diǎn)Q為坐標(biāo)平面內(nèi)一點(diǎn),以線段MN為對(duì)角線作萎形MENQ,當(dāng)菱形MENQ為正方形時(shí),請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】201911月銅陵舉辦了國(guó)際半程馬拉松比賽,吸引了大批運(yùn)動(dòng)愛(ài)好者.某商場(chǎng)看準(zhǔn)時(shí)機(jī),想訂購(gòu)一批款運(yùn)動(dòng)鞋,現(xiàn)有甲,乙兩家供應(yīng)商,它們均以每雙元的價(jià)格出售款運(yùn)動(dòng)鞋,其中供應(yīng)商甲一律九折銷售, 與購(gòu)買數(shù)量無(wú)關(guān);而供應(yīng)商乙規(guī)定:購(gòu)買數(shù)量在雙以內(nèi)(包含),以每雙200元的原價(jià)出售,當(dāng)購(gòu)買數(shù)量超出雙時(shí),其超出部分按原價(jià)的八折出售.問(wèn):

某商場(chǎng)購(gòu)買多少雙時(shí),去兩個(gè)供應(yīng)商處的進(jìn)貨價(jià)錢一樣多?

若該商場(chǎng)分兩次購(gòu)買運(yùn)動(dòng)鞋,第一次購(gòu)進(jìn)雙,第二次購(gòu)進(jìn)的數(shù)量是第次的倍多雙,如果你是商場(chǎng)經(jīng)理,在兩次分開(kāi)購(gòu)買的情況下,你預(yù)計(jì)花多少元采購(gòu)運(yùn)動(dòng)鞋,才能使得商場(chǎng)花銷最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫圖并填空,如圖:方格紙中每個(gè)小正方形的邊長(zhǎng)都為1,ABC的頂點(diǎn)都在方格紙的格點(diǎn)上,將ABC經(jīng)過(guò)一次平移后得到A'B'C'.圖中標(biāo)出了點(diǎn)C的對(duì)應(yīng)點(diǎn)C'.

(1)請(qǐng)畫出平移后的A'B'C';

(2)若連接AA',BB',則這兩條線段的關(guān)系是

(3)利用網(wǎng)格畫出ABCAC邊上的中線BD以及AB邊上的高CE;

(4)線段AB在平移過(guò)程中掃過(guò)區(qū)域的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,點(diǎn)D是射線CB上的一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE

(1)如圖1,當(dāng)點(diǎn)D在線段CB上,且∠BAC=90°時(shí),那么∠DCE= 度;

(2)設(shè)∠BAC= ,∠DCE=

① 如圖2,當(dāng)點(diǎn)D在線段CB上,∠BAC≠90°時(shí),請(qǐng)你探究之間的數(shù)量關(guān)系,并證明你的結(jié)論;

② 如圖3,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上,∠BAC≠90°時(shí),請(qǐng)將圖3補(bǔ)充完整,并直接寫出此時(shí)之間的數(shù)量關(guān)系(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售一批襯衫,平均每天可售出20件,每件盈利40元.為了擴(kuò)大銷售,增加盈利, 盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.假設(shè)在一定范圍內(nèi),襯衫的單價(jià)每降低1元,商場(chǎng)平均每天可多售出2件.設(shè)襯衫的單價(jià)降了x元:

(1)該商場(chǎng)降價(jià)后每件盈利___________元,每天可售出________件;

(2)如果商場(chǎng)通過(guò)銷售這批襯衫每天盈利1200元,那么襯衫的單價(jià)降了多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠ABC=90°,D是直線AB邊上的點(diǎn),AD=BC

1)如圖1,點(diǎn)D在線段AB上,過(guò)點(diǎn)AAFAB,且AF=BD,連接DCDF、CF,試判斷△CDF的形狀并說(shuō)明理由;

2)如圖2,點(diǎn)D在線段AB的延長(zhǎng)線上,點(diǎn)F在點(diǎn)A的左側(cè),其他條件不變,以上結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知整數(shù)a1a2,a3,…滿足下列條件:a1=0,a2=|a1+1|,a3=|a2+2|a4=|a3+3|,…依此類推,則a2020的值為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)CAB的延長(zhǎng)線上,AD平分∠CAE⊙O于點(diǎn)D,且AE⊥CD,垂足為點(diǎn)E

1)求證:直線CE⊙O的切線.

2)若BC=3,CD=3,求弦AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案