【題目】如圖,直線與反比例函數(shù)的圖像交于點、,與軸、軸分別交于點、,作軸于點,軸于點,過點、分別作,,分別交軸于點、,交于點,若四邊形和四邊形的面積和為12,則的值為_______.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線M:y=ax2-4ax+a-1(a≠0)與x軸交于A,B兩點(點A在點B左側(cè)),拋物線的頂點為D.
(1)拋物線M的對稱軸是直線______;
(2)當(dāng)AB=2時,求拋物線M的函數(shù)表達(dá)式;
(3)在(2)的條件下,直線l:y=kx+b(k≠0)經(jīng)過拋物線的頂點D,直線y=n與拋物線M有兩個公共點,它們的橫坐標(biāo)分別記為x1,x2,直線y=n與直線l的交點的橫坐標(biāo)記為x3(x3>0),若當(dāng)-2≤n≤-1時,總有x1-x3>x3-x2>0,請結(jié)合函數(shù)的圖象,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等邊三角形,點在邊上(點與點不重合) ,過點作交于點,連結(jié),分別為的中點,連結(jié).
(1)求證:
(2)的大小是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料,并完成相應(yīng)的任務(wù).
在數(shù)學(xué)中,當(dāng)問題的條件不夠時間,常添加輔助線構(gòu)成新圖形,形成新關(guān)系,建立已知與未知的橋梁,從而把原問題轉(zhuǎn)化為易于解決的問題.在著名美籍匈牙利數(shù)學(xué)教波利亞所著的《數(shù)學(xué)的發(fā)現(xiàn)》一書中有這樣一個例子:試作一個三角形,使它的三邊長分別是各條中線長的三分之一,解決這個問題的步驟如下:
第一步,如圖1,己知的三條中線,和相交于點,則有.
下面是該結(jié)論的部分證明過程:
證明:如圖1,過點作的平分線,交的延長線于點,則.
又,
∴.
∴.
∵點是的中點,
∴.
……
第二步,同理可以證明:.
第三步,如圖2,取BM的中點,連接.則的三邊長分別是各條中線長的三分之一.
任務(wù):(1)請在上面第一步中證明過程的基礎(chǔ)上完成對結(jié)論的證明;
(2)請完成第三步的結(jié)論的證明;
(3)請直接寫出圖2中與的面積比:_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的函數(shù)y=+x,如表是y與x的幾組對應(yīng)值:
x | … | ﹣4 | ﹣3 | -2 | - | -1 | - | - | 1 | 2 | 3 | 4 | … | |||
y | … | - | - | - | - | -2 | - | - | 2 | … |
如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點,根據(jù)描出的點畫出了此函數(shù)的圖象請你根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,根據(jù)畫出的函數(shù)圖象特征,對該函數(shù)的圖象與性質(zhì)進(jìn)行探究:
(1)該函數(shù)的圖象關(guān)于 對稱;
(2)在y軸右側(cè),函數(shù)變化規(guī)律是當(dāng)0<x<1,y隨x的增大而減。划(dāng)x>1,y隨x的增大而增大.在y軸左側(cè),函數(shù)變化規(guī)律是 .
(3)函數(shù)y=當(dāng)x 時,y有最 值為 .
(4)若方程+x=m有兩個不相等的實數(shù)根,則m的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,直徑AB與弦MN相交于點P,∠NPB=45°,若AP=2,BP=6,則MN的長為( )
A.B.2C.2D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B,C在⊙O上,AB∥OC.
(1)求證:∠ACB+∠BOC=90°;
(2)若⊙O的半徑為5,AC=8,求BC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖Rt△ABC中,∠ACB=90°,AC=4,BC=2,點P在邊AC上運動(點P與點A、C不重合).以P為圓心,PA為半徑作⊙P交邊AB于點D、過點D作⊙P的切線交射線BC于點E(點E與點B不重合).
(1)求證:BE=DE;
(2)若PA=1.求BE的長;
(3)在P點的運動過程中.(BE+PA)PA的值是否有最大值?如果有,求出最大值;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是銳角△ABC的外接圓,FH是⊙O的切線,切點為F,FH∥BC,連結(jié)AF交BC于E,∠ABC的平分線BD交AF于D,連結(jié)BF.下列結(jié)論:①AF平分∠BAC;②點F為△BDC的外心;③;④若點M,N分別是AB和AF上的動點,則BN+MN的最小值是ABsin∠BAC.其中一定正確的是_____(把你認(rèn)為正確結(jié)論的序號都填上).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com