【題目】如圖,AB為⊙O的直徑,點(diǎn)PAB延長線上的一點(diǎn),過點(diǎn)P作⊙O的切線PE,切點(diǎn)為M,過AB兩點(diǎn)分別作PE的垂線AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是___________.(寫出所有正確結(jié)論的序號)

AM平分∠CAB;

AM2ACAB;

③若AB4,∠APE30°,則的長為;

④若AC3BD1,則有CMDM.

【答案】①②④

【解析】

連接OM,由切線的性質(zhì)可得OMPC,繼而得OMAC,再根據(jù)平行線的性質(zhì)以及等邊對等角即可求得∠CAM=∠OAM,由此可判斷①;通過證明△ACM∽△AMB,根據(jù)相似三角形的對應(yīng)邊成比例可判斷②;求出∠MOP60°,利用弧長公式求得的長可判斷③;由BDPCACPC,OMPC,可得BDAC//OM,繼而可得PB=OB=AO,PD=DM=CM,進(jìn)而有OM=2BD2,在RtPBD中,PB=BO=OM=2,利用勾股定理求出PD的長,可得CMDMDP,由此可判斷④.

連接OM

PE為⊙O的切線,

OMPC

ACPC,

OMAC,

∴∠CAM=∠AMO,

OAOM,

OAM=∠AMO,

∴∠CAM=∠OAM,即AM平分∠CAB,故①正確;

AB為⊙O的直徑,

∴∠AMB90°,

∵∠CAM=∠MAB,∠ACM=∠AMB,

∴△ACM∽△AMB,

,

AM2ACAB,故②正確;

∵∠APE30°,

∴∠MOP=∠OMP﹣∠APE90°30°60°,

AB4

OB2,

的長為,故③錯誤;

BDPCACPCOMPC,

BDAC//OM,

∴△PBD∽△PAC,

PBPA,

又∵AO=BOAO+BO=AB,AB+PB=PA,

PB=OB=AO,

又∵BDAC//OM

PD=DM=CM,

OM=2BD2,

RtPBD中,PB=BO=OM=2

PD==,

CMDMDP,故④正確,

故答案為:①②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(定義)若一個四邊形恰好關(guān)于其中一條對角線所在的直線對稱,則我們將這個四邊形叫做鏡面四邊形.

(理解)(1)下列說法是否正確(對的打,錯的打×

①平行四邊形是一個鏡面四邊形   

②鏡面四邊形的面積等于對角線積的一半.   

2)如圖(1),請你在4×4的網(wǎng)格(每個小正方形的邊長為1)中畫出一個鏡面四邊形,使它圖(1)的頂點(diǎn)在格點(diǎn)上,且有一邊長為

(應(yīng)用)(3)如圖(2),已知鏡面四邊形ABCD,∠BAD60°,∠ABC90°,AB≠BC,PAD上一點(diǎn),AEBP的延長線上取一點(diǎn)F,使EFBE,連接AF,作∠FAD的平分線AGBFG,CMBFM,連接CG

①求∠EAG的度數(shù).

②比較BMEG的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)報(bào)名參加校運(yùn)動會,有以下5個項(xiàng)目可供選擇:徑賽項(xiàng)目:100m,200m分別用、、表示;田賽項(xiàng)目:跳遠(yuǎn),跳高分別用、表示

該同學(xué)從5個項(xiàng)目中任選一個,恰好是田賽項(xiàng)目的概率為______;

該同學(xué)從5個項(xiàng)目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個田賽項(xiàng)目和一個徑賽項(xiàng)目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A11),B4,2),C3,4).

1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1

2)請畫出△ABC關(guān)于原點(diǎn)對稱的△A2B2C2;

3)在x軸上求作一點(diǎn)P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中 過點(diǎn)A作AEDC,垂足為E,連接BE,F(xiàn)為BE上一點(diǎn),且AFE=D.

(1)求證:ABF∽△BEC;

(2)若AD=5,AB=8,sinD=,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,

1)如圖①,點(diǎn)在斜邊上,以點(diǎn)為圓心,長為半徑的圓交于點(diǎn),交于點(diǎn),與邊相切于點(diǎn).求證:;

2)在圖②中作,使它滿足以下條件:

①圓心在邊上;②經(jīng)過點(diǎn);③與邊相切.

(尺規(guī)作圖,只保留作圖痕跡,不要求寫出作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的頂點(diǎn)A,Bx軸的正半軸上,反比例函數(shù)y=在第一象限內(nèi)的圖象與直線y=x交于點(diǎn)D,且反比例函數(shù)y=BC于點(diǎn)EAD=3

1)求D點(diǎn)的坐標(biāo)及反比例函數(shù)的關(guān)系式;

2)若矩形的面積是24,請寫出CDE的面積(不需要寫解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一個動點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.

(1)求拋物線的表達(dá)式;

(2)設(shè)拋物線的對稱軸為l,lx軸的交點(diǎn)為D.在直線l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

(3)如圖2,連接BC,PB,PC,設(shè)PBC的面積為S.

①求S關(guān)于t的函數(shù)表達(dá)式;

②求P點(diǎn)到直線BC的距離的最大值,并求出此時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天門山索道是世界最長的高山客運(yùn)索道,位于張家界天門山景區(qū).在一次檢修維護(hù)中,檢修人員從索道A處開始,沿ABC路線對索道進(jìn)行檢修維護(hù).如圖:已知米,米,AB與水平線的夾角是,BC與水平線的夾角是.求:本次檢修中,檢修人員上升的垂直高度是多少米?(結(jié)果精確到1米,參考數(shù)據(jù):)

查看答案和解析>>

同步練習(xí)冊答案