【題目】如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點(diǎn)E在正方形內(nèi),在對(duì)角線AC上找到一點(diǎn)P,使PD+PE的和最小,則這個(gè)和的最小值是(   ).

A. B. C. 3 D.

【答案】A

【解析】

由于點(diǎn)BD關(guān)于AC對(duì)稱,所以連接BD,AC的交點(diǎn)即為P點(diǎn).此時(shí)PD+PE=BE最小,BE是等邊△ABE的邊BE=AB,由正方形ABCD的面積為12,可求出AB的長從而得出結(jié)果

設(shè)BEAC交于點(diǎn)FP′),連接BD

∵點(diǎn)BD關(guān)于AC對(duì)稱PD=PB,PD+PE=PB+PE=BE最小

PACBE的交點(diǎn)上時(shí),PD+PE最小,BE的長度;

∵正方形ABCD的面積為12,AB=2

又∵△ABE是等邊三角形BE=AB=2

故所求最小值為2

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某?萍紕(chuàng)新興趣小組用他們?cè)O(shè)計(jì)的機(jī)器人,在平坦的操場上進(jìn)行走展示.輸入指令后,機(jī)器人從出發(fā)點(diǎn)A先向東走10米,又向南走40米,再向西走20米,又向南走40米,再向東走70米到達(dá)終止點(diǎn)B.求終止點(diǎn)B與原出發(fā)點(diǎn)A的距離AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等腰三角形,,

尺規(guī)作圖:作的角平分線BD,交AC于點(diǎn)保留作圖痕跡,不寫作法;

判斷是否為等腰三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測出旗桿AB的高度,在旗桿前的平地上選擇一點(diǎn)C,測得旗桿頂部A的仰角為45°,在C、B之間選擇一點(diǎn)D(C、D、B三點(diǎn)共線),測得旗桿頂部A的仰角為75°,且CD=8m

(1)求點(diǎn)D到CA的距離;
(2)求旗桿AB的高.
(注:結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)后得到三角形A′B′C,若點(diǎn)B′恰好落在線段AB上,AC、A′B′交于點(diǎn)O,則∠COA′的度數(shù)是(

A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,Rt△ABC中,∠C=90°,BC=6,AC=8.動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿A—B—C的方向以每秒2個(gè)單位的速度運(yùn)動(dòng).設(shè)P的運(yùn)動(dòng)時(shí)間為t(秒).

(1)請(qǐng)直接用含t的代數(shù)式表示當(dāng)點(diǎn)PAB上時(shí),BP= ;②當(dāng)點(diǎn)PBC上時(shí),BP= ;

(2)求△BPC為等腰三角形的t.

(備用圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD的兩個(gè)頂點(diǎn)A、C在反比例函數(shù)y= (k≠0)圖象上,點(diǎn)B、D在x軸上,且B、D兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,AD交y軸于P點(diǎn)

(1)已知點(diǎn)A的坐標(biāo)是(2,3),求k的值及C點(diǎn)的坐標(biāo);
(2)若△APO的面積為2,求點(diǎn)D到直線AC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,延長AB至E,延長CD至F,BE=DF,連接EF,與BC、AD分別相交于P、Q兩點(diǎn).

(1)求證:CP=AQ;
(2)若BP=1,PQ=2 ,∠AEF=45°,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計(jì)算:|﹣ |﹣2cos45°﹣( 1+(tan80°﹣ 0+
(2)化簡:( ﹣2)÷ ﹣2x,再代入一個(gè)合適的x求值.

查看答案和解析>>

同步練習(xí)冊(cè)答案