【題目】某學(xué)習(xí)興趣小組參加一次單元測驗(yàn),成績統(tǒng)計情況如下表.
(1)興趣小組本次單元測試成績的平均數(shù)、中位數(shù)、眾數(shù)各是多少?
(2)老師打算為興趣小組下單元考試設(shè)定一個新目標(biāo),學(xué)生達(dá)到或超過目標(biāo)給予獎勵,并希望小組三分之一左右的優(yōu)秀學(xué)生得到獎勵,請你幫老師從平均數(shù)、中位數(shù)、眾數(shù)三個數(shù)中選擇一個比較恰當(dāng)?shù)哪繕?biāo)數(shù);如果計劃讓一半左右的人都得到獎勵,確定哪個數(shù)作為目標(biāo)恰當(dāng)些?
【答案】(1)平均數(shù):80.3分,中位數(shù):78分,眾數(shù):75分;(2)平均數(shù),中位數(shù)
【解析】
(1)根據(jù)平均數(shù)、中位數(shù)、眾數(shù)的定義求解;
(2)根據(jù)所求出的平均數(shù)、中位數(shù)和眾數(shù)進(jìn)行分析解答即可.
(1)平均數(shù)為: (73+74+75×5+76×4+77×3+78×2+79×3+82+83+84+86×2+88×3+90+92×2)=80.3(分),
按照從小到大的順序排列,共有30個數(shù),位于第15、第16的數(shù)都是78,所以中位數(shù)是(78+78)÷2=78(分),
75出現(xiàn)了5次,次數(shù)最多,所以眾數(shù)是75分;
(2)由(1)可知,平均數(shù)為80.3分,中位數(shù)為78分,眾數(shù)為75分,
如果希望小組三分之一左右的優(yōu)秀學(xué)生得到獎勵,老師可以選擇平均數(shù);
如果計劃讓一半左右的人都得到獎勵,根據(jù)中位數(shù)以上的人數(shù)占總?cè)藬?shù)的一半左右可得:確定中位數(shù)作為目標(biāo)恰當(dāng)些.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.
(1)已知x=2是方程的一個根,求m的值;
(2)以這個方程的兩個實(shí)數(shù)根作為△ABC中AB、AC(AB<AC)的邊長,當(dāng)BC=時,△ABC是等腰三角形,求此時m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.
(1)已知x=2是方程的一個根,求m的值;
(2)以這個方程的兩個實(shí)數(shù)根作為△ABC中AB、AC(AB<AC)的邊長,當(dāng)BC=時,△ABC是等腰三角形,求此時m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,∠BAC=60°,AC繞點(diǎn)C順時針旋轉(zhuǎn)60°至CD,F(xiàn)是CD的中點(diǎn),連接BF交AC于點(diǎn)E,連接AD.
求證:(1)AC=BF;
(2)四邊形ABFD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y=的圖象向右平移個單位長度得到一個新的函數(shù),當(dāng)自變量x取1,2,3,4,5,…,(正整數(shù))時,新的函數(shù)值分別為y1,y2,y3,y4,y5,…,其中最小值和最大值分別為( 。
A. y1,y2 B. y43,y44 C. y44,y45 D. y2014,y2015
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請直接寫出“落點(diǎn)”的個數(shù)和旋轉(zhuǎn)180°時點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直線上擺放著三個正方形
(1)如圖1,已知水平放置的兩個正方形的邊長依次是,斜著放置的正方形的面積_ ;兩個直角三角形的面積之和為____ (均用表示)
(2)如圖2,小正方形面積, 斜著放置的正方形的面積,求圖中兩個鈍角三角形的面積_ ;_
(3)圖3是由五個正方形所搭成的平面圖,與分別表示所在地三角形與正方形的面積,試寫出_ ;_ .(均用表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,防洪大堤的橫斷面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮同學(xué)在大堤上A點(diǎn)處用高1.5m的測量儀測出高壓電線桿CD頂端D的仰角為30°,己知地面BC寬30m,求高壓電線桿CD的高度(結(jié)果保留三個有效數(shù)字,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位運(yùn)動員在距籃下4m處跳起投籃,球運(yùn)行的路線是拋物線,當(dāng)球運(yùn)行的水平距離是2.5m時,達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃圈.已知籃圈中心到地面的距離為3.05m.
(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式.
(2)該運(yùn)動員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,
問:球出手時,他距離地面的高度是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com