【題目】綜合與實踐
問題情境
如圖1,和均為等邊三角形,點,,在同一條直線上,連接;
探究發(fā)現(xiàn)
(1)善思組發(fā)現(xiàn):,請你幫他們寫出推理過程;
(2)鉆研組受善思組的啟發(fā),求出了度數(shù),請直接寫出等于______度;
(3)奮進(jìn)組在前面兩組的基礎(chǔ)上又探索出了與的位置關(guān)系為______(請直接寫出結(jié)果);
拓展探究
(4)如圖2,和均為等腰直角三角形,,點,,在同一條直線上,為中邊上的高,連接,試探究,,之間有怎樣的數(shù)量關(guān)系.
創(chuàng)新組類比善思組的發(fā)現(xiàn),很快證出,進(jìn)而得出.請你寫出,,之間的數(shù)量關(guān)系并幫創(chuàng)新組完成后續(xù)的證明過程.
【答案】(1)證明見解析;(2)60;(3);(4),理由見解析.
【解析】
(1)根據(jù)等邊三角形的性質(zhì)可得,,,利用角的和差關(guān)系可得,利用SAS可證明;
(2)由外角性質(zhì)可得∠ADC=120°,根據(jù)全等三角形的性質(zhì)可得∠BEC=∠ADC=120°,進(jìn)而可得∠AEB的度數(shù);
(3)由∠CDE=∠AEB=60°,即可得出CD//BE;
(4)根據(jù)等腰直角三角形的性質(zhì)可得DE=2CM,根據(jù)AD=BE,AE=AD+DE即可得答案.
(1)∵和均為等邊三角形,
∴,,,
∴,即:,
在和中,
∴
(2)∵△DCE是等邊三角形,
∴∠DCE=∠DEC=60°,
∴∠ADC=∠DCE+∠DEC=120°,
由(1)得△ACD≌△BCE,
∴∠ADC=∠BEC=120°,
∴∠AEB=∠BEC-∠DEC=60°,
故答案為:60
(3)∵∠CDE=∠AEB=60°,
∴,
故答案為:CD//BE
(4),證明如下:
∵是等腰直角三角形,
∴,
∵,,
∴,
∴,,
∴,
∴,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=17.2米,設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=60°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一老人坐在MN這層臺階上曬太陽.(取1.73)
(1)求樓房的高度約為多少米?
(2)過了一會兒,當(dāng)α=45°時,問老人能否還曬到太陽?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點M、N分別是正五邊形ABCDE的邊BC、CD上的點,且BM=CN,AM交BN于點P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】結(jié)合二次函數(shù)的圖象圖回答:
當(dāng)________時,當(dāng)________時,當(dāng)________時,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,.將向上翻折,使點落在上,記為點,折痕為,再將以為對稱軸翻折至,連接.
(1)證明:
(2)猜想四邊形的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017天津)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.
(1)AB的長等于____;
(2)在△ABC的內(nèi)部有一點P,滿足S△PS△PS△PCA=1:2:3,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了考察甲、乙兩種農(nóng)作物的長勢,分別從中抽取了10株苗,測得苗高如表(單位:cm).
甲 | 9 | 10 | 11 | 12 | 7 | 13 | 10 | 8 | 12 | 8 |
乙 | 8 | 13 | 12 | 11 | 10 | 12 | 7 | 7 | 9 | 11 |
小穎已求得甲=10cm,S甲2=3.6(cm2).問:哪種農(nóng)作物的10株苗長得比較整齊?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在兩地之間有汽車站站,客車由地駛往站,貨車由地駛往地兩車同時出發(fā),勻速行駛圖2是客車、貨車離站的路程(千米)與行駛時間(小時)之間的函數(shù)關(guān)系圖像.
(1)填空:兩地相距 千米;貨車的速度是 千米/時;
(2)求三小時后,貨車離站的路程與行駛時間之間的函數(shù)表達(dá)式;
(3)試求客車與貨兩車何時相距千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com