【題目】同時拋擲A、B兩個均勻的小立方體(每個面上分別標(biāo)有數(shù)字1,2,3,4,5,6),設(shè)兩立方體朝上的數(shù)字分別為x、y,并以此確定點P(x,y),那么點P落在拋物線y=﹣x2+3x上的概率為(
A.
B.
C.
D.

【答案】A
【解析】解:根據(jù)題意,畫出樹狀圖如下:
一共有36種情況,
當(dāng)x=1時,y=﹣x2+3x=﹣12+3×1=2,
當(dāng)x=2時,y=﹣x2+3x=﹣22+3×2=2,
當(dāng)x=3時,y=﹣x2+3x=﹣32+3×3=0,
當(dāng)x=4時,y=﹣x2+3x=﹣42+3×4=﹣4,
當(dāng)x=5時,y=﹣x2+3x=﹣52+3×5=﹣10,
當(dāng)x=6時,y=﹣x2+3x=﹣62+3×6=﹣18,
所以,點在拋物線上的情況有2種,
P(點在拋物線上)= =
故選A.
【考點精析】掌握列表法與樹狀圖法是解答本題的根本,需要知道當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的菱形ABCD中,∠A=60°,M是AD邊的中點,N是AB邊上的一動點,將△AMN沿MN所在直線翻折得到△A′MN,連接A′C,則A′C長度的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖1,在△ABC和△ADE中,AB=AC=AD=AE,當(dāng)∠BAC+∠DAE=180° 時,我們稱△ABC與△DAE互為“頂補(bǔ)等腰三角形”,△ABC的邊BC上的高線AM叫做△ADE的“頂心距”,點A叫做“旋補(bǔ)中心”.

(1)特例感知:在圖2,圖3中,△ABC與△DAE互為“頂補(bǔ)等腰三角形”,AM是“頂心距”。

①如圖2,當(dāng)∠BAC=90°時,AM與DE之間的數(shù)量關(guān)系為AM=   DE;

②如圖3,當(dāng)∠BAC=120°,ED=6時,AM的長為   

(2)猜想論證:

在圖1中,當(dāng)∠BAC為任意角時,猜想AM與DE之間的數(shù)量關(guān)系,并給予證明。

(3)拓展應(yīng)用

如圖4,在四邊形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CA=,在四邊ABCD的內(nèi)部找到點P,使得△PAD與△PBC互為“頂補(bǔ)等腰三角形”并回答下列問題。

①請在圖中標(biāo)出點P的位置,并描述出該點的位置為

②直接寫出△PBC的“頂心距”的長為 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將從1開始的連續(xù)自然數(shù)按圖規(guī)律排列:規(guī)定位于第3行,第2列的自然數(shù)10記為(3,2),自然數(shù)15記為(42)…….

按此規(guī)律,回答下列問題:

1)記為(63)表示的自然數(shù)是___________;

2)自然數(shù)2018記為 __________;

3)用一個正方形方框在第3列和第4列中任意框四個數(shù),這四個數(shù)的和能為2018嗎?如果能,求出框出的四個數(shù)中最小的數(shù);如果不能,請寫出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)我們利用兩種不同的方法計算同一圖形的面積時,可以得到一個等式.例如,由圖①,可得等式:(a2b)(ab)a23ab2b2.

(1)由圖②,寫出所得的等式;

(2)利用(1)中所得到的結(jié)論,解決下面的問題: 已知abc11abbcac38,求a2b2c2的值;

(3)如圖③,琪琪用2 A型紙片,3 B型紙片,5 C型紙片拼出一個長方形,那么該長方形較長的一條邊長為多少.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題.

為促進(jìn)學(xué)生健康成長,切實提高學(xué)生健康水平,某校為各班用400元購進(jìn)若干體育用品,接著又用450元購進(jìn)第二批體育用品,已知第二批所購體育用品數(shù)是第一批所購體育用品數(shù)的1.5倍,且每件體育用品的進(jìn)價比第一批的進(jìn)價少5元,求第一批體育用品每件的進(jìn)價是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車從A地駛往B地,前三分之一路段為普通公路,其余路段為高速公路.已知汽車在普通公路上行駛的速度為60km/h,在高速公路上行駛的速度為100km/h.汽車從A地到B地共行駛了2.2h.請你根據(jù)以上信息,就該汽車行駛的“路程”或“時間”,提出一個問題:   ,并列出方程,求出解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC 中,點 D、E 分別在邊 BC、AC 上,且 AE=CD,BE 與 AD 相交于點 P,BQ⊥AD 于點 Q.

(1)求證:BE=AD;

(2)若 PQ=4,求 BP 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(
A. ×(﹣3)=1
B.5﹣8=﹣3
C.23=6
D.(﹣2013)0=0

查看答案和解析>>

同步練習(xí)冊答案