【題目】如圖,一艘船由A港沿北偏東65°方向航行90kmB港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向,求A,C兩港之間的距離.

【答案】90+30km

【解析】

BBEACE,在RtABE中,由∠ABE45°,AB,可得 AEBEAB90km,在RtCBE中,由∠ACB60°,可得CEBE30km,繼而可得ACAE+CE90+30

解:根據題意得,∠CAB65°20°45°,∠ACB40°+20°60°,AB90

BBEACE,

∴∠AEB=∠CEB90°

RtABE中,∵∠ABE45°,AB,

AEBEAB90km,

RtCBE中,∵∠ACB60°

CEBE30km,

ACAE+CE90+30

A,C兩港之間的距離為(90+30km

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著經濟的快速發(fā)展,環(huán)境問題越來越受到人們的關注,某校學生會為了解節(jié)能減排、垃圾分類知識

的普及情況,隨機調查了部分學生,調查結果分為非常了解”“了解”“了解較少”“不了解四類,

并將檢查結果繪制成下面兩個統(tǒng)計圖.

(1)本次調查的學生共有__________人,估計該校1200 名學生中不了解的人數(shù)是__________人.

(2)非常了解的4 人有兩名男生, 兩名女生,若從中隨機抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為1,它的6條對角線圍成一個正六邊形A2B2C2D2E2F2;正六邊形A2B2C2D2E2F26條對角線又圍成一個正六邊形A3B3C3D3E3F3;如此繼續(xù)下去,則六邊形A4B4C4D4E4F4的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,BCOA,BC=3,OA=6,AB=3

(1)直接寫出點B的坐標

(2)已知D.E分別為線段OC.OB上的點,OD=5,OE=2BE,直線DEx軸于點F,求直線DE的解析式

(3)在(2)的條件下,點M是直線DE上的一點,在x軸上方是否存在另一個點N,使以O.D.M.N為頂點的四邊形是菱形?若存在,請直接寫出點N的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABCADE,∠BAC=∠DAE90°,AB6,AC8,點D在線段BC上運動,

1)如圖1,求證:ABD∽△ACE

2)如圖2,當ADBC時,判斷四邊形ADCE的形狀,并證明.

3)當點D從點B運動到點C時,設P為線段DE的中點,在點D的運動過程中,求CP的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】消費者在某火鍋店飯后買單時可以參與一個抽獎游戲,規(guī)則如下:有張紙牌,它們的背面都是小豬佩奇頭像,正面為張笑臉、張哭臉.現(xiàn)將張紙牌洗勻后背面朝上擺放到桌上,然后讓消費者去翻紙牌.

1)現(xiàn)小楊有一次翻牌機會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎,她從中隨機翻開一張紙牌,小楊獲獎的概率是________

2)如糶小楊、小月都有翻兩張牌的機會,小楊先翻一張,放回后再翻一張;小月同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎.他們誰獲獎的機會更大些?通過畫樹狀圖或列表法分析說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,射線AM交一圓于點B,C,射線AN交該圓于點D,F,且BCDE,求證:ACAE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚傳統(tǒng)文化,某校開展了傳承經典文化,閱讀經典名著活動.為了解七、八年級學生(七、八年級各有600名學生)的閱讀效果,該校舉行了經典文化知識競賽.現(xiàn)從兩個年級各隨機抽取20名學生的競賽成績(百分制)進行分析,過程如下:

收集數(shù)據:

七年級:79,8573,8075,7687,7075,94,75,79,81,71,7580,86,59,8377

八年級:92,7487,82,7281,94,83,77,8380,81,7181,72,77,82,80,70,41

整理數(shù)據:

七年級

0

1

0

a

7

1

八年級

1

0

0

7

b

2

分析數(shù)據:

平均數(shù)

眾數(shù)

中位數(shù)

七年級

78

75

八年級

78

80.5

應用數(shù)據:

(1)由上表填空:a= b= ,c= ,d=

(2)估計該校七、八兩個年級學生在本次競賽中成績在90分以上的共有多少人?

(3)你認為哪個年級的學生對經典文化知識掌握的總體水平較好,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按要求解方程:

yy2)=3 y21(公式法)

x2+8x+90(配方法)

③(2x1232x1)+20(因式分解法)

查看答案和解析>>

同步練習冊答案