(2013•福田區(qū)一模)如圖,已知雙曲線y=
k
x
(k>0)
經(jīng)過直角三角形OAB斜邊OB的中點D,與直角邊AB相交于點C.若△OBC的面積為3,則k值是( 。
分析:過雙曲線上任意一點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S是個定值,即S=
1
2
|k|.
解答:解:如圖,過D點作DE⊥x軸,垂足為E.
∵Rt△OAB中,∠OAB=90°,
∴DE∥AB,
∵D為Rt△OAB斜邊OB的中點D,
∴DE為Rt△OAB的中位線,
∵△OED∽△OAB,
OD
OB
=
1
2

∵雙曲線的解析式是y=
k
x
(k>0)
,
∴S△AOC=S△DOE=
1
2
k,
∴S△AOB=4S△DOE=2k,
由S△AOB-S△AOC=S△OBC=3,得2k-
1
2
k=3,
解得k=2.
故選B.
點評:主要考查了反比例函數(shù)y=
k
x
(k>0)
中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得三角形面積為
1
2
|k|,是經(jīng)常考查的一個知識點;這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解k的幾何意義.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•福田區(qū)一模)沿海局勢日趨緊張,解放軍部隊準備往沿海運送A,B兩種新型裝備.已知A型裝備比B型裝備的2倍少300件,若安排一只一次能運送3000件運力的運輸部隊來負責,剛剛好一次能全部運完.
(1)求A、B兩種裝備各多少件?
(2)現(xiàn)某運輸部隊有甲,乙兩種運輸車共20輛,每輛車同時裝載A、B型裝備的數(shù)據(jù)見下表:
種類
車輛
每輛的裝載量 每輛的運輸成本
A型 B型
甲車 100 52 3000元
乙車 80 72 2500元
根據(jù)上述信息,請你設計出安排甲乙兩種運輸車將這兩種裝備全部運往目的地的各種可能的運輸方案;指出運輸成本最少的那種方案,并計算出該方案的運輸成本.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•福田區(qū)一模)二次函數(shù)y=x2-2x+6的頂點坐標是
(1,5)
(1,5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•福田區(qū)一模)某玩具店用6000元購進甲、乙兩種陀螺,甲種單價比乙種單價便宜5元,單獨買甲種比單獨買乙種可多買40個.設甲種陀螺單價為x元,根據(jù)題意列方程為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•福田區(qū)一模)如圖1,在矩形ABCD中,動點P從B點以1cm/秒速度出發(fā),沿BC、CD、DA運動到A點停止,設點P運動時間為x秒,△ABP面積為y cm2,y關于x的函數(shù)圖象如圖2所示,則矩形ABCD的面積是( 。ヽm2

查看答案和解析>>

同步練習冊答案