【題目】已知∠A=70°,下列角中是∠A的補角的是(

A. 70°B. 110°C. 20°D. 180°

【答案】B

【解析】

根據(jù)補角的定義求解即可.

解:因為∠A=70°,所以∠A的補角的是:180°-70°=110°,

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某星期下午,小強和同學(xué)小明相約在某公共汽車站一起乘車回學(xué)校,小強從家出發(fā)步行到車站,等小明到了后兩人一起乘公共汽車回到學(xué)校.圖中表示小強離開家的路程y(公里)和所用的時間x(分)之間的函數(shù)關(guān)系.下列說法錯誤的是( )

A.小強從家到公共汽車在步行了2公里
B.小強在公共汽車站等小明用了10分鐘
C.公共汽車的平均速度是30公里/小時
D.小強乘公共汽車用了20分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點P,BQ⊥AD于Q,PQ=4,PE=1.

(1)求證:∠BPQ=60°(提示:利用三角形全等、外角的性質(zhì))
(2)求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=6,點F是AB的中點,E為BC邊上一點,且EF⊥ED,連結(jié)DF,M為DF的中點,連結(jié)MA,ME.若AM⊥ME,則AE的長為( )

A.5
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,E為BC邊的中點,CD⊥AB,AB=2,AC=1,DE= ,則∠CDE+∠ACD=(
A.60°
B.75°
C.90°
D.105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:矩形ABCD的頂點B、C在x軸的正半軸上,A、D在拋物線上,矩形的頂點均為動點,且矩形在拋物線與軸圍成的區(qū)域里。

(1)設(shè)A點的坐標(biāo)為(, ),試求矩形周長關(guān)于變量的函數(shù)表達(dá)式;

(2)是否存在這樣的矩形,它的周長為9,試證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

國際比賽的足球場長在100m110m之間,寬在64m75m之間,為了迎接2015年的亞洲杯,某地建設(shè)了一個長方形的足球場,其長是寬的1.5倍,面積是7560m2請你判斷這個足球場能用于國際比賽嗎?并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中O是原點,ABCD的頂點A,C的坐標(biāo)分別是(8,0),(3,4),點D,E把線段OB三等分,延長CD、CE分別交OA、AB于點F,G,連接FG.則下列結(jié)論:
①F是OA的中點;②△OFD與△BEG相似;③四邊形DEGF的面積是 ;④OD=
其中正確的結(jié)論是(填寫所有正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy,已知二次函數(shù)y=﹣x2+bx的圖象過點A(4,0),頂點為B,連接AB、BO.

(1)求二次函數(shù)的表達(dá)式;

(2)若C是BO的中點,點Q在線段AB上,設(shè)點B關(guān)于直線CQ的對稱點為B',當(dāng)△OCB'為等邊三角形時,求BQ的長度;

(3)若點D在線段BO上,OD=2DB,點E、F在△OAB的邊上,且滿足△DOF與△DEF全等,求點E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案