(2006•柳州)如圖,△ABC中,AD是∠BAC的角平分線,且BD=CD,DE,DF分別垂直于AB,AC,垂足為E,F(xiàn).請(qǐng)你結(jié)合條件認(rèn)真研究,然后寫出三個(gè)正確的結(jié)論.
結(jié)論(1):
結(jié)論(2):
結(jié)論(3):

【答案】分析:先利用角平分線的性質(zhì),可得DE=DF,在Rt△BDE和Rt△DCF中,再結(jié)合已知條件,可證出Rt△BDE≌Rt△DCF,那么就有BE=CF,∠B=∠C.
解答:解:結(jié)論(1)△BDE≌△DCF.
結(jié)論(2)BE=CF.
結(jié)論(3)∠B=∠C.
證明:∵AD是∠BAC的平分線,DE⊥AB,DF⊥AC,
∴DE=DF,
又∵BD=CD,
∴Rt△BDE≌Rt△DCF,
∴BE=CF,∠B=∠C.
點(diǎn)評(píng):本題考查了角平分線的性質(zhì)以及直角三角形全等的判定(HL)和全等三角形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•柳州)如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過A(-1,0)、B(3,0)、N(2,3)三點(diǎn),且與y軸交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的解析式,并寫出頂點(diǎn)M及點(diǎn)C的坐標(biāo);
(2)若直線y=kx+d經(jīng)過C、M兩點(diǎn),且與x軸交于點(diǎn)D,試證明四邊形CDAN是平行四邊形;
(3)點(diǎn)P是這個(gè)二次函數(shù)的對(duì)稱軸上一動(dòng)點(diǎn),請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)P,使以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),并且與直線CD相切?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年九年級(jí)中考復(fù)習(xí)階段性測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•柳州)如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過A(-1,0)、B(3,0)、N(2,3)三點(diǎn),且與y軸交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的解析式,并寫出頂點(diǎn)M及點(diǎn)C的坐標(biāo);
(2)若直線y=kx+d經(jīng)過C、M兩點(diǎn),且與x軸交于點(diǎn)D,試證明四邊形CDAN是平行四邊形;
(3)點(diǎn)P是這個(gè)二次函數(shù)的對(duì)稱軸上一動(dòng)點(diǎn),請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)P,使以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),并且與直線CD相切?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年廣東省深圳市高中階段學(xué)校招生考試數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2006•柳州)如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過A(-1,0)、B(3,0)、N(2,3)三點(diǎn),且與y軸交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的解析式,并寫出頂點(diǎn)M及點(diǎn)C的坐標(biāo);
(2)若直線y=kx+d經(jīng)過C、M兩點(diǎn),且與x軸交于點(diǎn)D,試證明四邊形CDAN是平行四邊形;
(3)點(diǎn)P是這個(gè)二次函數(shù)的對(duì)稱軸上一動(dòng)點(diǎn),請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)P,使以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),并且與直線CD相切?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年廣西柳州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•柳州)如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過A(-1,0)、B(3,0)、N(2,3)三點(diǎn),且與y軸交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的解析式,并寫出頂點(diǎn)M及點(diǎn)C的坐標(biāo);
(2)若直線y=kx+d經(jīng)過C、M兩點(diǎn),且與x軸交于點(diǎn)D,試證明四邊形CDAN是平行四邊形;
(3)點(diǎn)P是這個(gè)二次函數(shù)的對(duì)稱軸上一動(dòng)點(diǎn),請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)P,使以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),并且與直線CD相切?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年廣西柳州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•柳州)如圖,拋物線y=-x2+2mx+m+2的圖象與x軸交于A(-1,0),B兩點(diǎn),在x軸上方且平行于x軸的直線EF與拋物線交于E,F(xiàn)兩點(diǎn),E在F的左側(cè),過E,F(xiàn)分別作x軸的垂線,垂足是M,N.
(1)求m的值及拋物線的頂點(diǎn)坐標(biāo);
(2)設(shè)BN=t,矩形EMNF的周長(zhǎng)為C,求C與t的函數(shù)表達(dá)式;
(3)當(dāng)矩形EMNF的周長(zhǎng)為10時(shí),將△ENM沿EN翻折,點(diǎn)M落在坐標(biāo)平面內(nèi)的點(diǎn)記為M',試判斷點(diǎn)M'是否在拋物線上?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案