如圖6,直線y=x與雙曲線y= (k>0,x>0)交于點(diǎn)A,將直線y=x向上平移4個(gè)單位長(zhǎng)度后,與y軸交于點(diǎn)C,與雙曲線y= (k>0,x>0)交于點(diǎn)B,若OA=3BC,則k的值為:

(A) 3       (B)6      (C)    (D)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,直線y=x與雙曲線y=
k
x
(k>0,x>0)交于點(diǎn)P,PA⊥x軸于A,S△PAO=
9
2

(1)求k的值.
(2)如圖2,點(diǎn)E是y軸負(fù)半軸上一動(dòng)點(diǎn),點(diǎn)F是x軸正半軸上一動(dòng)點(diǎn),且PE⊥PF,求OF-OE的值.
(3)如圖3,將點(diǎn)A向右平移5個(gè)單位長(zhǎng)度得點(diǎn)M,問(wèn):雙曲線y=
k
x
(x>0)上是否存在點(diǎn)Q,使S△QPO=S△MPO?若存在,求Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,直線y=x與直線y=-2x+4交于點(diǎn)A,點(diǎn)P是直線OA上一動(dòng)點(diǎn),作PQ∥x軸交直線y=-2x+4于點(diǎn)Q,以PQ為邊,向下作正方形PQMN,設(shè)點(diǎn)P的橫坐標(biāo)為t.
(1)求交點(diǎn)A的坐標(biāo);
(2)求點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)A過(guò)程中,正方形PQMN與△OAB重疊的面積S與t的函數(shù)關(guān)系式;
(3)是否存在點(diǎn)Q,使△OCQ為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖1,直線y=
1
3
x
與雙曲線y=
k
x
交于A,B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(6,m).
(1)求雙曲線y=
k
x
的解析式;
(2)點(diǎn)C(n,4)在雙曲線y=
k
x
上,求△AOC的面積;
(3)過(guò)原點(diǎn)O作另一條直線l與雙曲線y=
k
x
交于P,Q兩點(diǎn),且點(diǎn)P在第一象限.若由點(diǎn)A,P,B,Q為頂點(diǎn)組成的四邊形的面積為20,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,直線y=x與雙曲線y=數(shù)學(xué)公式(k>0,x>0)交于點(diǎn)P,PA⊥x軸于A,S△PAO=數(shù)學(xué)公式
(1)求k的值.
(2)如圖2,點(diǎn)E是y軸負(fù)半軸上一動(dòng)點(diǎn),點(diǎn)F是x軸正半軸上一動(dòng)點(diǎn),且PE⊥PF,求OF-OE的值.
(3)如圖3,將點(diǎn)A向右平移5個(gè)單位長(zhǎng)度得點(diǎn)M,問(wèn):雙曲線y=數(shù)學(xué)公式(x>0)上是否存在點(diǎn)Q,使S△QPO=S△MPO?若存在,求Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省臺(tái)州市三門中學(xué)九年級(jí)(上)月考數(shù)學(xué)試卷(10月份)(解析版) 題型:解答題

如圖1,直線y=-x+與兩坐標(biāo)軸交于A、B,以點(diǎn)M(1,0)為圓心,MO為半徑作小⊙M,又以點(diǎn)M為圓心、MA為半徑作大⊙M交坐標(biāo)軸于C、D.
(1)求證:直線AB是小⊙M的切線.
(2)連接BM,若小⊙M以2單位/秒的速度沿x軸向右平移,大⊙M以1單位/秒的速度沿射線BM方向平移,問(wèn):經(jīng)過(guò)多少秒后,兩圓相切?
(3)如圖2,作直線BE∥x軸交大⊙M于E,過(guò)點(diǎn)B作直線PQ,連接PE、PM,使∠EPB=120°,請(qǐng)你探究線段PB、PE、PM三者之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案