如圖,直線y=
3
3
x+
3
與x軸、y軸分別相交于A,B兩點,圓心P的坐標(biāo)為(1,0),圓P與y軸相切于點O.若將圓P沿x軸向左移動,當(dāng)圓P與該直線相交時,橫坐標(biāo)為整數(shù)的點P的個數(shù)是( 。
A.2B.3C.4D.5

∵直線y=
3
3
x+
3
與x軸、y軸分別相交于A,B兩點,
圓心P的坐標(biāo)為(1,0),
∴A點的坐標(biāo)為:0=
3
3
x+
3
,
x=-3,A(-3,0),
B點的坐標(biāo)為:(0,
3
),
∴AB=2
3
,
將圓P沿x軸向左移動,當(dāng)圓P與該直線相切于C1時,P1C1=1,
根據(jù)△AP1C1△ABO,
1
3
=
AP1
AB
=
AP1
2
3
,
∴AP1=2,
∴P1的坐標(biāo)為:(-1,0),
將圓P沿x軸向左移動,當(dāng)圓P與該直線相切于C2時,P2C2=1,
根據(jù)△AP2C2△ABO,
1
3
=
AP2
AB
=
AP2
2
3
,
∴AP2=2,
P2的坐標(biāo)為:(-5,0),
從-1到-5,整數(shù)點有-2,-3,-4,故橫坐標(biāo)為整數(shù)的點P的個數(shù)是3個.
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知AB是⊙O的直徑,MN是⊙O的切線,C是切點,連接AC,若∠CAB=50°,則∠ACN的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,直線MN和⊙O切于點C,AB是⊙O的直徑,AE⊥MN,BF⊥MN且與⊙O交于點G,垂足分別是E、F,AC是⊙O的弦,
(1)求證:AB=AE+BF;
(2)令A(yù)E=m,EF=n,BF=p,證明:n2=4mp;
(3)設(shè)⊙O的半徑為5,AC=6,求以AE、BF的長為根的一元二次方程;
(4)將直線MN向上平行移動至與⊙O相交時,m、n、p之間有什么關(guān)系?向下平行移動至與⊙O相離時,m、n、p之間又有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,AB是⊙O直徑,OD過弦BC的中點F,且交⊙O于點E,若∠AEC=∠ODB.求證:直線BD和⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,點E在⊙O上,過點E的直線EF與AB的延長線交于點F,AC⊥EF,垂足為C,AE平分∠FAC.
(1)求證:CF是⊙O的切線;
(2)∠F=30°時,求
S△OFE
S四邊形AOEC
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC是⊙O的切線,切點為點B,點D是⊙O上的一點,且ADOC.求證:AD•BC=OB•BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA、PB分別切⊙O于A、B,AC是⊙O的直徑,過P作PM⊥BP交CB的延長線于M
(1)求證:∠C=∠M
(2)若cos∠C=
2
3
,CM=3,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PA切⊙O于點A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點O逆時針方向旋轉(zhuǎn)60°到OD,則PD的長為( 。
A.
7
B.
31
2
C.
5
D.2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,⊙O的直徑AB與弦CD相交于E,
BC
=
BD
,⊙O的切線BF與弦AD的延長線相交于點F.
(1)求證:CDBF.
(2)連接BC,若⊙O的半徑為4,cos∠BCD=
3
4
,求線段AD、CD的長.

查看答案和解析>>

同步練習(xí)冊答案