(2000•東城區(qū))已知:如圖,矩形ABCD中,E、F是AB上的兩點,且AF=BE.求證:∠ADE=∠BCF.

【答案】分析:根據(jù)矩形的性質(zhì)可知AD=BC,∠A=∠B=90°.又AF=BE可證AE=BF,SAS可先得出△ADE-≌△BCF,再根據(jù)全等三角形的性質(zhì)得出結(jié)論.
解答:證明:∵四邊形ABCD是矩形,
∴AD=BC,∠A=∠B=90°.
∵AF=BE,
∴AF-EF=BE-EF.即AE=BF.(2分)
在△ADE和△BCF中,
,
∴△ADE-≌△BCF.(4分)
∴∠ADE=∠BCF.(5分)
點評:本題重點考查了矩形的性質(zhì)及三角形全等的判定定理,普通兩個三角形全等共有四個定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,無法證明三角形全等,本題是一道較為簡單的題目.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2000•東城區(qū))如圖,在直角坐標系中,點A、B的坐標分別為(-3,0)、(0,3).
(1)一次函數(shù)圖象上的兩點P、Q在直線AB的同側(cè),且直線PQ與y軸交點的縱坐標大于3,若△PAB與△QAB的面積都等于3,求這個一次函數(shù)的解析式;
(2)二次函數(shù)的圖象經(jīng)過點A、B,其頂點C在x軸的上方且在直線PQ上,求這個二次函數(shù)的解析式;
(3)若使(2)中所確定的拋物線的開口方向不變,頂點C在直線PQ上運動,當點C運動到點C′時,拋物線在x軸上截得的線段長為6,求點C′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年北京市東城區(qū)中考數(shù)學試卷(解析版) 題型:解答題

(2000•東城區(qū))如圖,在直角坐標系中,點A、B的坐標分別為(-3,0)、(0,3).
(1)一次函數(shù)圖象上的兩點P、Q在直線AB的同側(cè),且直線PQ與y軸交點的縱坐標大于3,若△PAB與△QAB的面積都等于3,求這個一次函數(shù)的解析式;
(2)二次函數(shù)的圖象經(jīng)過點A、B,其頂點C在x軸的上方且在直線PQ上,求這個二次函數(shù)的解析式;
(3)若使(2)中所確定的拋物線的開口方向不變,頂點C在直線PQ上運動,當點C運動到點C′時,拋物線在x軸上截得的線段長為6,求點C′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《數(shù)據(jù)收集與處理》(01)(解析版) 題型:解答題

(2000•東城區(qū))附加題:為保護環(huán)境,某校環(huán)保小組成員小明收集廢電池,第一天收集1號電池4節(jié),5號電池5節(jié),總重量為460克;第二天收集1號電池2節(jié),5號電池3節(jié),總重量為240克.
(1)求1號和5號電池每節(jié)分別重多少克?
(2)學校環(huán)保小組為估算四月份收集廢電池的總重量,他們隨意抽取了該月某5天每天收集廢電池的數(shù)量,如下表:
1號電池(單位:節(jié))2930322831
5號電池(單位:節(jié))5153474950
分別計算兩種廢電池的樣本平均數(shù);并由此估算該月(30天)環(huán)保小組收集廢電池的總重量是多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(01)(解析版) 題型:選擇題

(2000•東城區(qū))下列計算正確的是( )
A.π=1
B.
C.tan30°=
D.|-a3|2=a5

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(01)(解析版) 題型:選擇題

(2000•東城區(qū))如果α是銳角,且cosα=,那么cos(90°-α)的值是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案