【題目】如圖,已知AB=AC,AD=AE,BD和CE相交于點(diǎn)O.
(1)求證:△ABD≌△ACE;
(2)判斷△BOC的形狀,并說明理由.
【答案】(1)見解析;(2)等腰三角形,理由見解析.
【解析】
(1)由“SAS”可證△ABD≌△ACE;
(2)由全等三角形的性質(zhì)可得∠ABD=∠ACE,由等腰三角形的性質(zhì)可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得結(jié)論.
證明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE(SAS);
(2)△BOC是等腰三角形,
理由如下:
∵△ABD≌△ACE,
∴∠ABD=∠ACE,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,
∴∠OBC=∠OCB,
∴BO=CO,
∴△BOC是等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是矩形ABCD的一條對角線.
(1)作BD的垂直平分線EF,分別交AD,BC于點(diǎn)E,F,垂足為點(diǎn)O;(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)
(2)在(1)中,連接BE和DF,求證:四邊形DEBF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅要外出參加一項(xiàng)慶;顒(dòng),需網(wǎng)購一個(gè)拉桿箱,圖1,圖2分別是她上網(wǎng)時(shí)看到的某種型號拉桿箱的實(shí)物圖與示意圖,并獲得了如下信息:滑桿DE,箱長BC,拉桿AB的長度都相等,B,F在AC上,C在DE上,支桿DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,求AC的長度(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)某蔬菜經(jīng)銷商去蔬菜生產(chǎn)基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時(shí),每千克批發(fā)價(jià)是5元;若超過60千克時(shí),批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.
(1)根據(jù)題意,填寫如表:
(2)經(jīng)調(diào)查,該蔬菜經(jīng)銷商銷售該種蔬菜的日銷售量y(千克)與零售價(jià)x(元/千克)是一次函數(shù)關(guān)系,其圖象如圖,求出y與x之間的函數(shù)關(guān)系式;
(3)若該蔬菜經(jīng)銷商每日銷售此種蔬菜不低于75千克,且當(dāng)日零售價(jià)不變,那么零售價(jià)定為多少時(shí),該經(jīng)銷商銷售此種蔬菜的當(dāng)日利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,小球從左側(cè)的斜坡滾下,到達(dá)底端后又沿著右側(cè)斜坡向上滾,在這個(gè)過程中,小球的運(yùn)動(dòng)速度v(單位:m/s)與運(yùn)動(dòng)時(shí)間t (單位:s)的函數(shù)圖象如圖2,則該小球的運(yùn)動(dòng)路程y(單位:m)與運(yùn)動(dòng)時(shí)間t(單位:s)之間的函數(shù)圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B為直線y=x上的兩點(diǎn),過A、B兩點(diǎn)分別作y軸的平行線交雙曲線(x>0)于點(diǎn)C、D兩點(diǎn).若BD=2AC,則4OC2﹣OD2的值為( )
A.5B.6C.7D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=3,點(diǎn)D為邊AB的中點(diǎn).點(diǎn)P從點(diǎn)A出發(fā),沿AC方向以每秒1個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位長度的速度先沿CB方向運(yùn)動(dòng)到點(diǎn)B,再沿BA方向向終點(diǎn)A運(yùn)動(dòng),以DP、DQ為鄰邊構(gòu)造PEQD,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)設(shè)點(diǎn)Q到邊AC的距離為h,直接用含t的代數(shù)式表示h;
(2)當(dāng)點(diǎn)E落在AC邊上時(shí),求t的值;
(3)當(dāng)點(diǎn)Q在邊AB上時(shí),設(shè)PEQD的面積為S(S>0),求S與t之間的函數(shù)關(guān)系式;
(4)連接CD,直接寫出CD將PEQD分成的兩部分圖形面積相等時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+4與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣2,0),B點(diǎn)坐標(biāo)為(8,0).
(1)求經(jīng)過A,B,C三點(diǎn)的拋物線的解析式;
(2)如果M為拋物線的頂點(diǎn),連接CM、BM,求四邊形COBM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年是全面建成小康社會(huì)和“十三五”規(guī)劃收官之年,為促進(jìn)銷售,某公司開發(fā)了A、B兩項(xiàng)新產(chǎn)品,銷售前景廣闊.已知A、B的成本、售價(jià)和每日銷量如下表所示:
成本(元/件) | 售價(jià)(元/件) | 銷量(件/日) | |
A | 500 | 700 | 500 |
B | 800 | 1050 | 300 |
根據(jù)銷售情況,公司對B項(xiàng)產(chǎn)品降價(jià)銷售,同時(shí)對A項(xiàng)產(chǎn)品提價(jià)銷售,發(fā)現(xiàn)B項(xiàng)產(chǎn)品每降價(jià)5元就多銷售2件,A項(xiàng)產(chǎn)品每提價(jià)5元就可少銷售1件,要保持每日的總銷量不變,設(shè)A項(xiàng)產(chǎn)品每天少銷售x個(gè),每天總獲利為y元.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)要使每天利潤不低于208000元,直接寫出x的取值范圍;
(3)該公司決定每銷售一件A產(chǎn)品,就捐給紅十字會(huì)a(0<a≤100)元作為抗疫基金.當(dāng)40≤x≤50時(shí),每日的最大利潤為237250元,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com