如圖,在四邊形ABCD中,∠B=∠D=90°,AE、CF分別平分∠BAD和∠BCD.
求證:AE∥CF.

證明見(jiàn)解析.

解析試題分析:在四邊形ABCD中,依據(jù)題意可得∠BAD+∠BCD=180°,由角平分線的性質(zhì)可得∠BAE+∠BCF=90°,再根據(jù)直角三角形兩銳角互余可求∠BEA=∠BCF,從而可證AE∥CF.
試題解析:在四邊形ABCD中,
∵∠B=∠D=90°
∴∠BAD+∠BCD=360°-2×90°=180°
∵AE、CF分別平分∠BAD和∠BCD
∴∠BAE+∠BCF=∠BAD+∠BCD=(∠BAD+∠BCD)=90°
∵∠BAE+∠BEA=90°
∴∠BEA=∠BCF
∴AE∥CF.
考點(diǎn):1.角平分線的性質(zhì);2.平行線的判定;3.直角三角形兩銳角互余.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

(2013年四川廣安3分)如圖,若∠1=40°,∠2=40°,∠3=116°30′,則∠4=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,C是AE上一點(diǎn),∠B=∠DAE,BC∥DE,AC=DE.求證:AB=DA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,EF⊥AB,CD⊥AB,AC⊥BC,∠1=∠2,求證:DG⊥BC

證明:∵EF⊥AB CD⊥AB                  
∴∠EFA=∠CDA=90°(垂直定義)
∠1=∠           
∴EF∥CD                                   
∴∠1=∠2(已知)
∴∠2=∠ACD(等量代換)
∴DG∥AC                      
∴∠DGB=∠ACB                              
∵AC⊥BC(已知)
∴∠ACB=90°(垂直定義)
∴∠DGB=90°即DG⊥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知DC平分∠ACB,且∠1=∠B.求證:∠EDC=∠ECD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,AD∥BC,∠1=∠2。求證:∠3+∠4=180°。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,以∠AOB的頂點(diǎn)O為圓心,適當(dāng)長(zhǎng)為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于CD的長(zhǎng)為半徑畫弧,兩弧在∠AOB內(nèi)部交于點(diǎn)E,過(guò)點(diǎn)E作射線OE,連接CD.則下列說(shuō)法錯(cuò)誤的是

A.射線OE是∠AOB的平分線
B.△COD是等腰三角形
C.C、D兩點(diǎn)關(guān)于OE所在直線對(duì)稱
D.O、E兩點(diǎn)關(guān)于CD所在直線對(duì)稱

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

填寫推理理由(1×10=10分)
如圖,已知AB∥CD ,∠1=∠2,∠3=∠4,試說(shuō)明AD∥BE
解:∵AB∥CD(已知)
∴∠4=∠_____(               )
∵∠3=∠4(已知)
∴∠3=∠_____(               )
∵∠1=∠2(已知)  
∴∠ CAE+     =∠CAE+       
即 ∠_____  =∠_____       
∴∠3=∠_____
∴AD∥BE(                    )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,線段,點(diǎn)是線段上任意一點(diǎn),點(diǎn)是線段的中點(diǎn),點(diǎn)是線段的中點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案