【題目】已知,在四邊形ABCD中,點(diǎn)E、點(diǎn)F分別為AD、BC的中點(diǎn),連接EF

1)如圖1,ABCD,連接AF并延長交DC的延長線于點(diǎn)G,則AB、CD、EF之間的數(shù)量關(guān)系為   ;

2)如圖2,∠B90°,∠C150°,求ABCD、EF之間的數(shù)量關(guān)系?

3)如圖3,∠ABC=∠BCD45°,連接AC、BD交于點(diǎn)O,連接OE,若AB,CD2,BC6,則OE   

【答案】(1)AB+CD2EF;(24EF2AB2+CD2+ABCD,證明詳見解析;(3.

【解析】

(1)根據(jù)三角形的中位線和全等三角形的判定和性質(zhì)解答即可;

(2)如圖2中,作CKBC,連接AF,延長AFCKK.連接DK,作DHCKH.首先證明△AFB≌△KFC,推出ABCK,再利用勾股定理,三角形的中位線定理即可解決問題;

(3)如圖3中,以點(diǎn)B為原點(diǎn),BCx軸,建立平面直角坐標(biāo)系如圖所示.想辦法求出點(diǎn)EO的坐標(biāo)即可解決問題;

解:(1)結(jié)論:AB+CD2EF,

理由:如圖1中,

點(diǎn)E、點(diǎn)F分別為ADBC的中點(diǎn),

BFFCAEED,

ABCD

∴∠ABFGCF,

∵∠BFACFG

∴△ABF≌△GCF(ASA),

ABCG,AFFG

AEED,AFFG,

∴2EFDGDC+CGDC+AB

AB+CD2EF;

(2)如圖2中,作CKBC,連接AF,延長AFCKK.連接DK,作DHCKH

∵∠ABFKCF,BFFC,AFBCFK

∴△AFB≌△KFC,

ABCKAFFK,

∵∠BCD150°,BCK90°,

∴∠DCK120°,

∴∠DCH60°,

CHCD,DHCD,

Rt△DKH中,DK2DH2+KH2(CD)2+(AB+CD)2AB2+CD2+ABCD,

AEED,AFFK,

EFDK,

∴4EF2DK2,

∴4EF2AB2+CD2+ABCD

(3)如圖3中,以點(diǎn)B為原點(diǎn),BCx軸,建立平面直角坐標(biāo)系如圖所示.

由題意:A(1,1),B(0,0),D(42),

AEED,

E(,),

AC的解析式為y-x+,BD的解析式為yx

,解得,

O(),

OE.

故答案為:(1)AB+CD2EF(2)4EF2AB2+CD2+ABCD,證明詳見解析;(3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BAD和BCE均為等腰直角三角形,BAD=BCE=90°,點(diǎn)M為DE的中點(diǎn),過點(diǎn)E與AD平行的直線交射線AM于點(diǎn)N.

(1)當(dāng)A,B,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:M為AN的中點(diǎn);

(2)將圖1中的BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,B,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:ACN為等腰直角三角形;

(3)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn)到圖3位置時(shí),(2)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1的一張紙條,按圖,把這一紙條先沿折疊并壓平,再沿折疊并壓平,若圖3,則圖2的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線ACBD相交于點(diǎn)O,OAB是等邊三角形.

1)求證:ABCD為矩形;

2)若AB4,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),與y軸相交于(0, ),點(diǎn)A坐標(biāo)為(-1,2),點(diǎn)B是點(diǎn)A關(guān)于y軸的對稱點(diǎn),點(diǎn)C在x軸的正半軸上.

(1)求該拋物線的函數(shù)解析式;
(2)點(diǎn)F為線段AC上一動點(diǎn),過點(diǎn)F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為點(diǎn)E,G,當(dāng)四邊形OEFG為正方形時(shí),求出點(diǎn)F的坐標(biāo);
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動,設(shè)平移的距離為t,正方形的邊EF與AC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB4,BC8,將紙片沿EF折疊,使點(diǎn)C與點(diǎn)A重合,則下列結(jié)論錯(cuò)誤的是( )

A. AFAEB. ABE≌△AGFC. AFEFD. BE3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題.從下列四個(gè)條件:①ABBC;②∠ABC90°;③ACBD;④ACBD中選出兩個(gè)作為補(bǔ)充條件,使平行四邊形ABCD成為正方形(如圖所示).現(xiàn)有下列四種選法,你認(rèn)為其中錯(cuò)誤的是( )

A. ①②B. ②④C. ①③D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王曉同學(xué)要證明命題“對角線相等的平行四邊形是矩形”是正確的,她先作出了如圖所示的平行四邊形ABCD,并寫出了如下不完整的已知和求證.

已知:如圖,在平行四邊形ABCD中,

求證:平行四邊形ABCD

(1)在方框中填空,以補(bǔ)全已知和求證;

(2)按王曉的想法寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生的學(xué)業(yè)負(fù)擔(dān)過重會嚴(yán)重影響學(xué)生對待學(xué)習(xí)的態(tài)度.為此我市教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖和圖的統(tǒng)計(jì)圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;

2)將圖補(bǔ)充完整;

3)求出圖C級所占的圓心角的度數(shù);

4)根據(jù)抽樣調(diào)查結(jié)果,請你估計(jì)我市近8000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?

查看答案和解析>>

同步練習(xí)冊答案