如圖,在等邊三角形ABC中,D、E分別在ACAB上,且,.試說明:△ADE∽△CDB
證明見解析
解:∵是等邊三角形,
,.·················· (3分)
,
.······························ (5分)

,
,···························· (7分)
. (9分)
利用等量代換和比例線段求得,從而得出結(jié)論
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)(3分)如圖①,在Rt△ABC中,∠ABC=90°,BD⊥AC于點D.
求證:AB2=AD·AC;
(2)(4分)如圖②,在Rt△ABC中,∠ABC=90°,點D為BC邊上的點,BE⊥AD于點E,延長BE交AC
于點F.,求的值;
(3)(5分) 在Rt△ABC中,∠ABC=90°,點D為直線BC上的動點(點D不與B、C重合),直線BE⊥AD
于點E,交直線AC于點F。若,請?zhí)骄坎⒅苯訉懗?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823015748645501.png" style="vertical-align:middle;" />的所有可能的值(用含n的式子表
示),不必證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)如圖,△ABC內(nèi)接于⊙O,且AB=AC,⊙O的弦AE交
于BC于D. 求證:AB.AC=AD.AE

(2)在(1)的條件下當弦AE的延長線與BC的延長線相交于點D時,上述結(jié)論是
否還成立?若成立,請給予證明。若不成立,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,D是等邊△ABC的邊BC上一動點,ED//AC交AB于點E.DF⊥AC交AC于點F,DF=,若△DCF與E、F、D三點組成的三角形相似,則BD的長等于_______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中, BE⊥AC于E,AD⊥BC于D.求證:△CDE∽ △CAB
  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,則下列結(jié)論正確的是(  )
A.∠E=2∠KB.BC=2HIC.六邊形ABCDEF的周長=六邊形GHIJKL的周長D.S六邊形ABCDEF=2S六邊形GHIJKL

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,E,F(xiàn)分別是AD,CD邊上的點,連接BE,AF,它們相交于點G,延長BE交CD的延長線與點H,則圖中相似三角形共有(   )
A.2對B.3對
C.4對D.5對

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB為等腰直角△ABC的斜邊(AB為定長線段),O為AB的中點,P為AC延長線上的一
個動點,線段PB的垂直平分線交線段OC于點E,D為垂足,當P點運動時,給出下列四個結(jié)論:
①E為△ABP的外心;  ②△PBE為等腰直角三角形;
③PC·OA = OE·PB;   ④CE + PC的值不變.
A.1個       B.2個   C.3個        D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

□ABCD中,點EAD的中點,連接BE,交AC于點F,則(   )
A.1:2B.1:4C.2:5D.2:3

查看答案和解析>>

同步練習冊答案