【題目】如圖,在平行四邊形中,點(diǎn)是邊的中點(diǎn),連接并延長(zhǎng),交延長(zhǎng)線于點(diǎn)連接.
(1)求證:四邊形是平行四邊形;
(2)若,則當(dāng) 時(shí),四邊形是矩形.
【答案】(1)證明見解析;(2)100°
【解析】
試題分析:(1)由AAS證明△BOE≌△COD,得出OE=OD,即可得出結(jié)論;
(2)由平行四邊形的性質(zhì)得出∠BCD=∠A=50°,由三角形的外角性質(zhì)求出∠ODC=∠BCD,得出OC=OD,證出DE=BC,即可得出結(jié)論.
試題解析:(1)∵四邊形ABCD為平行四邊形,
∴AB∥DC,AB=CD,
∴∠OEB=∠ODC,
又∵O為BC的中點(diǎn),
∴BO=CO,
在△BOE和△COD中,
,
∴△BOE≌△COD(AAS);
∴OE=OD,
∴四邊形BECD是平行四邊形;
(2)若∠A=50°,則當(dāng)∠BOD=100°時(shí),四邊形BECD是矩形.理由如下:
∵四邊形ABCD是平行四邊形,
∴∠BCD=∠A=50°,
∵∠BOD=∠BCD+∠ODC,
∴∠ODC=100°-50°=50°=∠BCD,
∴OC=OD,
∵BO=CO,OD=OE,
∴DE=BC,
∵四邊形BECD是平行四邊形,
∴四邊形BECD是矩形;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近期浙江大學(xué)的科學(xué)家們研制出今為止世界上最輕的材料,這種被稱為“全碳?xì)饽z”的固態(tài)材料密度僅每立方厘米0.00016克,數(shù)據(jù)0.00016用科學(xué)記數(shù)法表示應(yīng)是( )
A.1.6×104
B.0.16×10﹣3
C.1.6×10﹣4
D.16×10﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長(zhǎng)為的正三角形紙片按如下順序進(jìn)行兩次折疊,展開后,得折痕(如圖①),點(diǎn)為其交點(diǎn).
(1)探求與的數(shù)量關(guān)系,并說明理由;
(2)如圖②,若分別為上的動(dòng)點(diǎn).
①當(dāng)的長(zhǎng)度取得最小值時(shí),求的長(zhǎng)度;
②如圖③,若點(diǎn)在線段上,,則的最小值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.
(1)求證:BE=CE;
(2)如圖2,若BE的延長(zhǎng)線交AC于點(diǎn)F,且BF⊥AC,垂足為F,∠BAC=45°,原題設(shè)其它條件不變.求證:△AEF≌△BCF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】?jī)山M鄰邊分別相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個(gè)箏形,其中AD=CD,AB=CB,在探究箏形的性質(zhì)時(shí),得到如下結(jié)論:①△ABD≌△CBD;②AC⊥BD;③四邊形ABCD的面積= ACBD,其中正確的結(jié)論有( )
A.①②
B.①③
C.②③
D.①③②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC與△CDE都是等邊三角形,且∠EBD=65°,則∠AEB的度數(shù)是( )
A.115°
B.120°
C.125°
D.130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點(diǎn)分別在上(點(diǎn)與點(diǎn)不重合),且.將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到.當(dāng)的斜邊、直角邊與分別相交于點(diǎn)(點(diǎn)與點(diǎn)不重合)時(shí),設(shè).
(1)求證:;
(2)求關(guān)于的函數(shù)解析式,并直接寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的對(duì)稱軸是直線,與軸交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)為拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸于點(diǎn),交直線于點(diǎn).
(1)求拋物線解析式;
(2)若點(diǎn)在第一象限內(nèi),當(dāng)時(shí),求四邊形的面積;
(3)在(2)的條件下,若點(diǎn)為直線上一點(diǎn),點(diǎn)為平面直角坐標(biāo)系內(nèi)一點(diǎn),是否存在這樣的點(diǎn)和點(diǎn),使得以點(diǎn)為頂點(diǎn)的四邊形是菱形?若存在上,直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
【溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便探究】
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com