【題目】已知,順次連接矩形各邊的中點,得到一個菱形,如圖①;再順次連接菱形各邊中點,得到一個新的矩形,如圖②;然后順次連接新的矩形各邊中點,得到一個新的菱形,如圖3.如此反復(fù)操作下去,則第2018個圖形中直角三角形的個數(shù)有( 。
A.2018個B.4043個C.4036個D.6042個
【答案】C
【解析】
寫出前幾個圖形中的直角三角形的個數(shù),并找出規(guī)律,當(dāng)n為奇數(shù)時,三角形的個數(shù)是2(n+1),當(dāng)n為偶數(shù)時,三角形的個數(shù)是2n,根據(jù)此規(guī)律求解即可.
解:第1個圖形,有4個直角三角形,
第2個圖形,有4個直角三角形,
第3個圖形,有8個直角三角形,
第4個圖形,有8個直角三角形,
…,
依此類推,當(dāng)n為奇數(shù)時,三角形的個數(shù)是2(n+1),當(dāng)n為偶數(shù)時,三角形的個數(shù)是2n個,
所以,第2018個圖形中直角三角形的個數(shù)是2×2018=4036.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設(shè)甲的騎行時間為x(h)(0≤x≤2)
(1)根據(jù)題意,填寫下表:
時間x(h) 與A地的距離 | 0.5 | 1.8 | _____ |
甲與A地的距離(km) | 5 |
| 20 |
乙與A地的距離(km) | 0 | 12 |
|
(2)設(shè)甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關(guān)于x的函數(shù)解析式;
(3)設(shè)甲,乙兩人之間的距離為y,當(dāng)y=12時,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一塊含30°角的三角板的直角頂點放在反比例函數(shù)y=﹣(x<0)的圖象上的點C處,另兩個頂點分別落在原點O和x軸的負(fù)半軸上的點A處,且∠CAO=30°,則AC邊與該函數(shù)圖象的另一交點D的坐標(biāo)坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準(zhǔn)備爭創(chuàng)全國衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.
(1)求溫馨提示牌和垃圾箱的單價各是多少元?
(2)該小區(qū)至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點D,過其頂點C作直線CP⊥x軸,垂足為點P,連接AD、BC.
(1)求點A、B、D的坐標(biāo);
(2)若△AOD與△BPC相似,求a的值;
(3)點D、O、C、B能否在同一個圓上,若能,求出a的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形OACB的頂點O、A、B的坐標(biāo)分別是(0,0)、(0,a),(b,0),且a、b滿足
(1)如圖1,求點C的坐標(biāo);
(2)如圖2,點P為邊OB上一動點,作等腰Rt△APD,且∠APD=90°.當(dāng)點P從O運動到點B的過程中,求點D運動路程的長度;
(3)如圖3,在(2)的條件下,作等腰Rt△BED,且∠DBE=90°,再作等腰Rt△ECF,且∠ECF=90°,直線FE分別交AC、OB于點M、N,求證:FM=EN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時B到墻底端C的距離為0.7米.如果梯子的頂端沿墻面下滑0.4米,那么點B將向左滑動多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C,D(如圖).
(1)求證:AC=BD;
(2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com