如圖所示,如果平行四邊形ABCD的對(duì)角線ACBD相交于點(diǎn)O,那么圖中的全等三角形共有      對(duì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖所示,將一張長(zhǎng)方形的紙對(duì)折,可得一條折痕(圖中虛線),繼續(xù)對(duì)折,對(duì)折時(shí)每次的折痕與上次的折痕保持平行,得到3條折痕,如圖(2)所示,連續(xù)對(duì)折三次后,可以得到7條折痕,那么對(duì)折四次可以得到15條折痕,如果對(duì)折n次,可以得到( 。l折痕.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

33、將一張長(zhǎng)方形的紙對(duì)折,如圖所示可得到一條折痕.(圖中虛線),繼續(xù)對(duì)折,對(duì)折時(shí)每次折痕與上次的折痕保持平行,連續(xù)對(duì)折三次后,可以得7條折痕,那么對(duì)折四次可以得到
15
條折痕,如果對(duì)折n次,可以得到
(2n-1)
條折痕.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在八年級(jí)上冊(cè)我們已經(jīng)知道三角形的中位線具有如下性質(zhì):
三角形的中位線平行于第三邊,并且等于它的一半.
如圖所示,已知△ABC和下列四種說法:
①D是AB中點(diǎn);②E是AC中點(diǎn);③DE=
12
BC;④DE∥BC.
請(qǐng)你以其中的兩種說法為條件(①和②不能同時(shí)作為條件),其余兩種說法為結(jié)論,構(gòu)造一個(gè)命題;并判定你所構(gòu)造的命題是否正確.如果正確請(qǐng)說明理由;如果不正確,請(qǐng)舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

有一張長(zhǎng)比寬多8cm的矩形紙板.如果在紙板的四個(gè)角處各剪去一個(gè)正方形(如圖精英家教網(wǎng)所示),可制成高是4cm,容積是512cm3的一個(gè)無蓋長(zhǎng)方體紙盒.
(1)求矩形紙板的長(zhǎng)和寬;
(2)在操作過程中,由于不小心,矩形紙板被剪掉一角,其直角邊長(zhǎng)分別為3cm和6cm.如果在剩余的紙板上先裁剪一個(gè)各邊與原矩形紙板各邊平行或重合的矩形,然后再按如圖裁剪方式制作高仍是4cm的無蓋長(zhǎng)方體紙盒,那么你認(rèn)為如何裁剪才能使制作的長(zhǎng)方體紙盒的容積最大,請(qǐng)畫出草圖,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將一張長(zhǎng)方形的紙對(duì)折,如圖所示可得到一條折痕(圖中虛線).繼續(xù)對(duì)折,對(duì)折時(shí)每次折痕與上次的折痕保持平行,連續(xù)對(duì)折三次后,可以得到7條折痕,那么對(duì)折四次可以得到
15
15
條折痕.如果對(duì)折n次,可以得到
2n-1
2n-1
條折痕.

查看答案和解析>>

同步練習(xí)冊(cè)答案