精英家教網 > 初中數學 > 題目詳情
如圖,已知經過原點的拋物線y=-2x2+4x與x軸的另一交點為A,現將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P.
(1)求點A的坐標,并判斷△PCA存在時它的形狀(不要求說理);
(2)在x軸上是否存在兩條相等的線段?若存在,請一一找出,并寫出它精英家教網們的長度(可用含m的式子表示);若不存在,請說明理由;
(3)設△CDP的面積為S,求S關于m的關系式.
分析:(1)令原拋物線的解析式中y=0,即可求得A點的坐標;
很顯然P點位于線段AC的垂直平分線上,由此可判定△PAC是等腰三角形;
(2)根據平移的性質知:AO=CD=2,OC=AD=m;
(3)求△CDP的面積需要知道兩個條件:底邊CD及CD邊上的高PH(過P作PH⊥x軸于H);
因此本題要分兩種情況討論:①0<m<2時,P點在x軸上方;②m>2時,P點位于x軸下方;
可分別表示出兩種情況的CH的長即P點橫坐標,根據拋物線的解析式即可得到P點的縱坐標;以CD為底,P點縱坐標的絕對值為高即可得到關于S、m的函數關系式.
解答:解:(1)令-2x2+4x=0,
得x1=0,x2=2
∴點A的坐標為(2,0)
△PCA是等腰三角形.

(2)存在.
OC=AD=m,OA=CD=2.

(3)如圖,當0<m<2時,作PH⊥x軸于H,
設P(xP,yP
∵A(2,0),C(m,0)
∴AC=2-m,
∴CH=
AC
2
=
2-m
2

∴xP=OH=m+
2-m
2
=
m+2
2
精英家教網
把xP=
m+2
2
代入y=-2x2+4x,
得yP=-
1
2
m2+2
∵CD=OA=2
∴S=
1
2
CD•HP=
1
2
•2•(-
1
2
m2+2)=-
1
2
m2+2
如圖,當m>2時,作PH⊥x軸于H,
設P(xP,yP
∵A(2,0),C(m,0)精英家教網
∴AC=m-2,
∴AH=
m-2
2

∴xP=OH=2+
m-2
2
=
m+2
2

把xP=
m+2
2
代入y=-2x2+4x,得
yP=-
1
2
m2+2
∵CD=OA=2
∴S=
1
2
CD•HP=
1
2
•2•(-yP)
=
1
2
m2-2.
綜上可得:S=
-
1
2
m2+2(0<m<2)
1
2
m2-2(m>2)
點評:此題考查了二次函數圖象與坐標軸交點坐標的求法、平移的性質以及三角形面積的求法等知識,需注意的是(3)題要根據m的取值范圍分段討論,以免造成漏解、錯解.
練習冊系列答案
相關習題

科目:初中數學 來源:第34章《二次函數》中考題集(31):34.4 二次函數的應用(解析版) 題型:解答題

如圖,已知經過原點的拋物線y=-2x2+4x與x軸的另一交點為A,現將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P.
(1)求點A的坐標,并判斷△PCA存在時它的形狀(不要求說理);
(2)在x軸上是否存在兩條相等的線段?若存在,請一一找出,并寫出它們的長度(可用含m的式子表示);若不存在,請說明理由;
(3)設△CDP的面積為S,求S關于m的關系式.

查看答案和解析>>

科目:初中數學 來源:2010-2011學年北京市密云縣九年級(上)期末數學試卷(解析版) 題型:解答題

如圖,已知經過原點的拋物線y=-2x2+4x與x軸的另一交點為A,現將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P.
(1)求點A的坐標,并判斷△PCA存在時它的形狀(不要求說理);
(2)在x軸上是否存在兩條相等的線段?若存在,請一一找出,并寫出它們的長度(可用含m的式子表示);若不存在,請說明理由;
(3)設△CDP的面積為S,求S關于m的關系式.

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》中考題集(32):2.8 二次函數的應用(解析版) 題型:解答題

如圖,已知經過原點的拋物線y=-2x2+4x與x軸的另一交點為A,現將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P.
(1)求點A的坐標,并判斷△PCA存在時它的形狀(不要求說理);
(2)在x軸上是否存在兩條相等的線段?若存在,請一一找出,并寫出它們的長度(可用含m的式子表示);若不存在,請說明理由;
(3)設△CDP的面積為S,求S關于m的關系式.

查看答案和解析>>

科目:初中數學 來源:第20章《二次函數和反比例函數》中考題集(28):20.5 二次函數的一些應用(解析版) 題型:解答題

如圖,已知經過原點的拋物線y=-2x2+4x與x軸的另一交點為A,現將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P.
(1)求點A的坐標,并判斷△PCA存在時它的形狀(不要求說理);
(2)在x軸上是否存在兩條相等的線段?若存在,請一一找出,并寫出它們的長度(可用含m的式子表示);若不存在,請說明理由;
(3)設△CDP的面積為S,求S關于m的關系式.

查看答案和解析>>

同步練習冊答案