已知在△ABC中,∠ACB=90°,AC=BC=4,現(xiàn)將一塊邊長足夠大的直角三角板的直角頂點置于AB的中點O,兩直角邊分別經(jīng)過點B、C,然后將三角板繞點O按順時針方向旋轉(zhuǎn)一個角度α(0°<α<90°),旋轉(zhuǎn)后,直角三角板的直角邊分別與AC、BC相交于點K、H,四邊形CHOK是旋轉(zhuǎn)過程中三角板與△ABC的重疊部分(如圖所示).那么,在上述旋轉(zhuǎn)過程中:
(1)線段BH與CK具有怎樣的數(shù)量關(guān)系?四邊形CHOK的面積是否發(fā)生變化?證明你發(fā)現(xiàn)的結(jié)論;
(2)連接HK,設(shè)BH=x.
①當△CHK的面積為
32
時,求出x的值.
②試問△OHK的面積是否存在最小值,若存在,求出此時x的值,若不存在,請說明理由.
分析:(1)連接OC,可以證得:△COK≌△BOH,根據(jù)S四邊形CHOK=S△COK+S△COH=S△BOH+S△COH=S△COB=
1
2
S△ABC即可證得:四邊形CHOK的面積始終保持不變;
(2)①BC=4,CH=4-x,三角形的面積公式可以得到:
1
2
CH•CK=
3
2
,即(4-x)x=3,從而求得x的值;
②設(shè)△OKH的面積為S,根據(jù)三角形的面積公式,即可得到關(guān)于x的函數(shù)關(guān)系式,然后根據(jù)函數(shù)的性質(zhì)即可求解.
解答:解:(1)在旋轉(zhuǎn)過程中,BH=CK,四邊形CHOK的面積始終保持不變,其值為△ABC面積的一半.
理由如下:
連接OC
∵△ABC為等腰直角三角形,O為斜邊AB的中點,CO⊥AB
∴∠OCK=∠B=45°,CO=OB,又∵∠COK與∠BOH均為旋轉(zhuǎn)角,
∴∠COK=∠BOH=α
∴△COK≌△BOH
∴BH=CK,S四邊形CHOK=S△COK+S△COH=S△BOH+S△COH=S△COB=
1
2
S△ABC=4.

(2)①由(1)知CK=BH=x,
∵BC=4,
∴CH=4-x,根據(jù)題意,得
1
2
CH•CK=
3
2
,即(4-x)x=3,
解這個方程得x1=1,x2=3,
此兩根滿足條件:0<x<4
所以當△CKH的面積為
3
2
時,x的取值是1或3;
②設(shè)△OKH的面積為S,由(1)知四邊形CHOK的面積為4,于是得關(guān)系式:
S=4-S△CKH=4-
1
2
x(4-x)=
1
2
(x2-4x)+4
=
1
2
(x-2)2+2
當x=2時,函數(shù)S有最小值2,
∵x=2時,滿足條件0<x<4,
∴△OKH的面積存在最小值,此時x的值是2.
點評:本題考查了三角形全等的判定與性質(zhì),以及二次函數(shù)的性質(zhì),正確列出函數(shù)解析式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知在△ABC中,AB=AC=5,BC=8,點G為重心,那么GA=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知在△ABC中,∠A=(2x+10)°,∠B=(3x)°,∠ACD是△ABC的一個外角,且∠ACD=(6x-10)°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在△ABC中,∠BAC=90°,AC=4,BC=4
5
,若點D、E、F分別為AB、BC、AC邊的中點,點P為AB邊上的一個動點(且不與點A、B重合),PQ∥AC,且交BC于點Q,以PQ為一邊在點B的異側(cè)作正方形PQMN,設(shè)正方形PQMN與矩形ADEF的公共部分的面積為S,BP的長為x,試求S與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在△ABC中,∠BAC為直角,AB=AC,D為AC上一點,CE⊥BD于E.若BD平分∠ABC.
求證:CE=
12
BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,∠B與∠C的平分線交于點P.
(1)當∠A=70°時,求∠BPC的度數(shù);
(2)當∠A=112°時,求∠BPC的度數(shù);
(3)當∠A=α?xí)r,求∠BPC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹