精英家教網 > 初中數學 > 題目詳情
如圖,在直角坐標系xOy中,Rt△OAB和Rt△OCD的直角頂點A,C始終在x軸的正半軸上,B,D在第一象限內,點B在直線OD上方,OC=CD,OD=2,M為OD的中點,AB與OD相交于E,當點B位置變化時,Rt△OAB的面積恒為。
試解決下列問題:
(1)填空:點D坐標為____;
(2)設點B橫坐標為t,請把BD長表示成關于t的函數關系式,并化簡;
(3)等式BO=BD能否成立?為什么?
(4)設CM與AB相交于F,當△BDE為直角三角形時,判斷四邊形BDCF的形狀,并證明你的結論。
解:(1);
(2)由Rt△OAB的面積為,得B(t,),
∵BD2=AC2+(AB-CD)2,

=
②;
(3)若OB=BD,則OB2=BD2,
在Rt△OAB中,OB2=OA2+AB2=,
由①得,得,
,
,
∴此方程無解,
∴OB≠BD;
(4)如果,①當∠EBD=90°時,此時F,E,M三點重合,如右上圖
∵BF⊥x軸,DC⊥x軸,
∴BF∥DC,
∴此時四邊形BDCF為直角梯形;
②當∠EDB=90°時,如右下圖
∵CF⊥OD,∴BD∥CF,
又AB⊥x軸,DC⊥x軸,
∴BF∥DC,
∴此時四邊形BDCF為平行四邊形;
下證平行四邊形BDCF為菱形:
在Rt△BDO中,OB2=OD2+BD2,

,
,
∵BD在OD上方,解得,
,(舍去),得
此時BD=CD=
∴此時四邊形BDCF為菱形。
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,在直角坐標系中,⊙M與y軸相切于點C,與x軸交于A(x1,0),B(x2,0)兩點,其中x1,x2是方程x2-10x+16=0的兩個根,且x1<x2,連接MC,過A、B、C三點的拋物線的頂點為N.
(1)求過A、B、C三點的拋物線的解析式;
(2)判斷直線NA與⊙M的位置關系,并說明理由;
(3)一動點P從點C出發(fā),以每秒1個單位長的速度沿CM向點M運動,同時,一動點Q從點B出發(fā),沿射線BA以每秒4個單位長度的速度運動,當P運動到M點時,兩動點同時停止運動,當時間t為何值時,以Q、O、C為頂點的三角形與△PCO相似?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖:在直角坐標系中放入一邊長OC為6的矩形紙片ABCO,將紙翻折后,使點B恰好落在x軸上,記為B',折痕為CE,已知tan∠OB′C=
3
4

(1)求出B′點的坐標;
(2)求折痕CE所在直線的解析式;
(3)作B′G∥AB交CE于G,已知拋物線y=
1
8
x2-
14
3
通過G點,以O為圓心OG的長為精英家教網半徑的圓與拋物線是否還有除G點以外的交點?若有,請找出這個交點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

已如:如圖,在直角坐標系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,AB為⊙C的直徑,PA切⊙O于點A,交x軸的負半軸于點P,連接PC交OA于點D.
(1)求證:PC⊥OA;
(2)若點P在x軸的負半軸上運動,原題的其他條件不變,設點P的坐標為(x,0),四邊形
POCA的面積為S,求S與點P的橫坐標x之間的函數關系式;
(3)在(2)的情況下,分析并判斷是否存在這樣的一點P,使S四邊形POCA=S△AOB,若存在,直接寫出點P的坐標(不寫過程);若不存在,簡要說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖:在直角坐標系中描出A(-4,-4),B(1,-4),C(2,-1),D(-3,-1)四個點.
(1)順次連接A,B,C,D四個點組成的圖形是什么圖形?
(2)畫出(1)中圖形分別向上5個單位向右3個單位后的圖形.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角坐標系中,A的坐標為(a,0),D的坐標為(0,b),且a、b滿足
a+2
+(b-4)2=0

(1)求A、D兩點的坐標;
(2)以A為直角頂點作等腰直角三角形△ADB,直接寫出B的坐標;
(3)在(2)的條件下,當點B在第四象限時,將△ADB沿直線BD翻折得到△A′DB,點P為線段BD上一動點(不與B、D重合),PM⊥PA交A′B于M,且PM=PA,MN⊥PB于N,請?zhí)骄浚篜D、PN、BN之間的數量關系.

查看答案和解析>>

同步練習冊答案