如圖,AB為⊙O的直徑,AD平分∠BAC交⊙O于點D,DE⊥AC交AC的延長線于點E,BF⊥AB交AD的延長線于點F,
(1)求證:DE是⊙O的切線;
(2)若DE=3,⊙O的半徑為5,求BF的長.
(1)證明:連OD,如圖,
∵AD平分∠BAC,
∴∠1=∠2(等弦對等角),
又∵OD=OA,得∠2=∠3(等角對等邊),
∴∠1=∠3(等量代換),
而DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切線;

(2)過D作DP⊥AB,P為垂足,
∵AD為∠BAC的平分線,DE=3,
∴DP=DE=3,又⊙O的半徑為5,
在Rt△OPD中,OD=5,DP=3,得OP=4,則AP=9,
∵BF⊥AB,
∴DPFB,
DP
FB
=
AP
AB
,即
3
BF
=
9
10

∴BF=
10
3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,O是△ABC的外心.∠CAE=∠B.
(1)求證:AE是⊙0的切線.
(2)當點B繞著點0順時針旋轉.使外心O恰好在BC邊上或在△ABC內時,(1)中的結論是否仍然成立?請畫圖并證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,延長弦BD到點C,使DC=BD,連接AC,過點D作DE⊥AC,垂足為E.
(1)判斷直線DE與⊙O的位置關系,并證明你的結論;
(2)若⊙O的半徑為6,∠BAC=60°,延長ED交AB延長線于點F,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,Rt△BDE中,∠BDE=90°,BC平分∠DBE交DE于點C,AC⊥CB交BE于點A,△ABC的外接圓的半徑為r.
(1)若∠E=30°,求證:BC•BD=r•ED;
(2)若BD=3,DE=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,點C在⊙O上,點P是直徑AB上的一點(不與A重合),過點P作AB的垂線交BC于點Q.
(1)在線段PQ上取一點D,使DQ=DC,連接DC,試判斷CD與⊙O的位置關系,并說明理由.
(2)若cosB=
3
5
,BP=6,AP=1,求QC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB、AC是⊙O的兩條切線,B、C是切點,若∠A=70°,則∠BOC的度數(shù)為( 。
A.130°B.120°C.110°D.100°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,Rt△ABC中,∠C=90°,CD=6,以CD為直徑的⊙O切AB于G,設AG2=y,AC=x.
(1)求y與x的函數(shù)關系式,并指出自變量的取值范圍.
(2)利用所求出的函數(shù)關系式,求當AC為何值時,才能使得BC與⊙O的直徑相等?
(3)△ACB有可能為等腰三角形嗎?若可能,請求出x的值;若不可能,請說出理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,Rt△ABC中∠C=90°、∠A=30°,在AC邊上取點O畫圓使⊙O經(jīng)過A、B兩點,
(1)求證:以O為圓心,以OC為半徑的圓與AB相切.
(2)下列結論正確的序號是______.(少選酌情給分,多選、錯均不給分)
①AO=2CO;
②AO=BC;
③延長BC交⊙O與D,則A、B、D是⊙O的三等分點.
④圖中陰影面積為:(
1
3
π+
3
8
)•OA2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知⊙O1經(jīng)過A(-4,2),B(-3,3),C(-1,-1),O(0,0)四點,一次函數(shù)y=-x-2的圖象是直線l,直線l與y軸交于點D.
(1)在右邊的平面直角坐標系中畫出⊙O1,直線l與⊙O1的交點坐標為______;
(2)若⊙O1上存在整點P(橫坐標與縱坐標均為整數(shù)的點稱為整點),使得△APD為等腰三角形,所有滿足條件的點P坐標為______;
(3)將⊙O1沿x軸向右平移______個單位時,⊙O1與y相切;
(4)將⊙O1沿x軸向右平移______個單位時,⊙O1與l相切.

查看答案和解析>>

同步練習冊答案