【題目】2015年深圳國際馬拉松賽于12月7日拉開帷幕,某馬拉松愛好者用無人機拍攝比賽過程.如圖,在無人機的鏡頭C下,觀測深南大道A處的俯角為30°,B處的俯角為45°.如果此時無人機鏡頭C處離路面的高度CD為100米,點A、D、B在同一直線上,求A、B兩處之間的距離.

【答案】解:由已知條件得∠A=30°,∠B=45°
在Rt△ACD中,∵tanA= ,
∴AD= = = =100 ,
在Rt△BCD中,∵tanB= ,
∴BD= = =100,
∴AB=AD+BD=100 +100.
答:A、B兩處之間的距離為(100 +100)m
【解析】在直角△ACD中利用三角函數(shù)求得AD,然后在直角△BCD中利用三角函數(shù)求得BD,根據(jù)AB=AD+BD即可求解.
【考點精析】本題主要考查了關于仰角俯角問題的相關知識點,需要掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】2018年全國兩會于35日至20日在北京召開,為了了解市民獲取兩會新聞的最主要途徑,記者小李開展了一次抽樣調(diào)查,根據(jù)調(diào)查結果繪制了如圖所示尚不完整的統(tǒng)計圖.根據(jù)圖中信息解答下列問題:

(1)這次接受調(diào)查的市民總人數(shù)是   ;

(2)扇形統(tǒng)計圖中,電視所對應的圓心角的度數(shù)是   

(3)請補全條形統(tǒng)計圖;

(4)若該市約有700萬人,請你估計其中將電腦上網(wǎng)和手機上網(wǎng)作為獲取新聞的最主要途徑的總人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列關系錯誤的是(  )

A. AOC=∠AOB+∠BOC

B. AOC=∠AOD-∠COD

C. AOC=∠AOB+∠BOD-∠BOC

D. AOC=∠AOD-∠BOD+∠BOC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有如下結論:
①a>0;②b>0;③a+b+c>0;④2a+b=0;⑤方程ax2+bx+c=0的解為x1=﹣1,x2=3.
其中正確的是(

A.①②③
B.②③④
C.③④⑤
D.①④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在長方形ABCD中,AB=3,BC=4,動點P從點A開始按A→B→C→D的方向運動到點D.如圖,設動點P所經(jīng)過的路程為x,APD的面積為y.(當點P與點AD重合時,y=0)

(1)寫出yx之間的函數(shù)解析式;

(2)畫出此函數(shù)的圖象

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AC=4,BC=3,則tan∠ACD的值為(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的文字,解答問題.

大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,但是由于1<<2,所以的整數(shù)部分為1,將減去其整數(shù)部分1,差就是小數(shù)部分-1,根據(jù)以上的內(nèi)容,解答下面的問題:

1的整數(shù)部分是 ,小數(shù)部分是 ;

21+的整數(shù)部分是 ,小數(shù)部分是 ;

3若設2+整數(shù)部分是x,小數(shù)部分是y,求x-y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】來自中國、美國、立陶宛、加拿大的四國青年男籃巔峰爭霸賽于2014325-27日在我縣體育館舉行。小明來到體育館看球賽,進場時,發(fā)現(xiàn)門票還在家里,此時離比賽開始還有25分鐘,于是立即步行回家取票.同時,他父親從家里出發(fā)騎自行車以他3倍的速度給他送票,兩人在途中相遇,相遇后小明立即坐父親的自行車趕回體育館.如圖中線段AB、OB分別表示父、子倆送票、取票過程中,離體育館的路程S(米)與所用時間t(分鐘)之間的圖象,結合圖象解答下列問題(假設騎自行車和步行的速度始終保持不變):

(1)從圖中可知,小明家離體育館 米,父子倆在出發(fā)后 分鐘相遇.

(2)求出父親與小明相遇時距離體育館還有多遠?

(3)小明能否在比賽開始之前趕回體育館?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程的解為 的解為 的解為;……根據(jù)發(fā)現(xiàn)的規(guī)律:

(1)請寫出第7個方程:___________,它的解為x1=____________ , x2=____________.

(2)請寫出第(n-1)個方程:____________,它的解為x1=____________, x2=____________.

查看答案和解析>>

同步練習冊答案