【題目】已知:如圖,ABCDABCD.求證:ADBC

證明:∵ ABCD,

______=∠______ ( )

____________中,

Δ______Δ______ ).

_____=∠____ ( )

____________ ( )

【答案】詳見解析.

【解析】

根據(jù)兩直線平行,內(nèi)錯角相等求出∠ABD=BDC,再證明ABDCDB全等,然后根據(jù)全等三角形對應角相等得出∠ADB=CBD,進一步得出ADBC

證明:∵ABCD

∴∠ABD=BDC(兩直線平行,內(nèi)錯角相等),

ABDCDB中,

,

∴△ABD≌△CDBSAS),

∴∠ADB=CBD(全等三角形對應角相等),

ADBC(內(nèi)錯角相等,兩直線平行).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】慶元大道兩側(cè)需要綠化,某綠化組承擔了此項任務,綠化組工作一段時間后,提高了工作效率,該綠化組完成的綠化面積S(單位m2)與工作時間t(單位:h)之間的函數(shù)關(guān)系如圖所示,則該綠化組提高工作效率前每小時完成的綠化面積是( )

A. 200B. 300C. 400D. 500

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABACADBC邊的中線,過點ABC的平行線,過點BAD的平行線,兩線交于點E.

1)求證:四邊形ADBE是矩形;

2)連接DE,交AB于點O,若BC=8AO=,求cosAED的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷。揚州市某中學設(shè)計了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

1)這次統(tǒng)計共抽查了 名學生;

2)在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為 度;

3)將條形統(tǒng)計圖補充完整;

4)該校共有1500名學生,請估計該校最喜歡用微信進行溝通的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知ABC是等腰直角三角形,∠BAC=90°,點DBC的中點.作正方形DEFG,使點A、C分別在DGDE上,連接AEBG

1)求證:AE=BG

2)將正方形DEFG繞點D逆時針方向旋轉(zhuǎn)αα≤360°)如圖2所示,判斷(1)中的結(jié)論是否仍然成立?如果仍成立,請給予證明;如果不成立,請說明理由;

3)若BC=DE=4,當旋轉(zhuǎn)角α為多少度時,AE取得最大值?直接寫出AE取得最大值時α的度數(shù),并利用備用圖畫出這時的正方形DEFG,最后求出這時AF的值.

1 2 備用圖

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】郵遞員騎車從郵局出發(fā),先向西騎行 2 km 到達 A 村,繼續(xù)向西騎行 3 km 到達 B 村, 然后向東騎行 9 km 到達 C 村,最后回到郵局.

(1)以郵局為原點,以向東方向為正方向,用 1 cm 表示 1 km 畫數(shù)軸,并在該數(shù)軸上表示 A,B,C 三個村莊的位置;

(2)C 村離 A 村有多遠?

(3)郵遞員一共騎行了多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列各數(shù)填入相應的集合內(nèi):+8.5,-30.3,0,-3.4,12,-9,4,-1.2-2.

1)正數(shù)集合:___________…};

2)整數(shù)集合:___________…};

3)非正整數(shù)集合:_____________…};

4)負分數(shù)集合:________________….

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①是一塊瓷磚的圖案,用這種瓷磚鋪設(shè)地面,如果鋪設(shè)成如圖②的圖案,其中完整的圓一共有5個,如果鋪設(shè)成如圖③的圖案,其中完整的圓一共有13個,如果鋪設(shè)成如圖④的圖案,其中完整的圓一共有25個,以此規(guī)律下去,第10個圖中,完整的圓一共有__________個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程

(1)5x-1=x+1

(2)2x+32x-1=16-x+1

查看答案和解析>>

同步練習冊答案