【題目】如圖,在菱形ABCD中,∠A60°,點E、F分別為AD、DC上的動點,∠EBF=60°,點E從點A向點D運動的過程中,AECF的長度(

A. 逐漸增加 B. 逐漸減小

C. 保持不變且與EF的長度相等 D. 保持不變且與AB的長度相等

【答案】D

【解析】如圖,連接BD,由菱形的性質(zhì)以及∠A=60°,可得BCD是等邊三角形,從而可得BD=BC,再通過證明BCFBDE,從而可得CF=DE,繼而可得到AE+CF=AB,由此即可作出判斷.

如圖,連接BD,

∵四邊形ABCD是菱形,∠A=60°,

CD=BC,C=A=60°,ABC=ADC==120°,

∴∠4=DBC=60°,

∴△BCD是等邊三角形,

BD=BC,

∵∠2+3=EBF=60°,1+2=DBC=60°,

∴∠1=3,

BCFBDE中,

,

∴△BCFBDE,

CF=DE,

AE+DE=AB,

AE+CF=AB,

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A1,4),B4n)兩點.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)點Px軸上的一動點,當PA+PB最小時,求點P的坐標;

3)觀察圖象,直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,一塊RtABC的綠地,量得兩直角邊AC=8cmBC=6cm.現(xiàn)在要將這塊綠地擴充成等腰△ABD,且擴充部分(△ADC)是以8cm為直角邊長的直角三角形,求擴充等腰△ABD的周長.

1)在圖1中,當AB=AD=10cm時,△ABD的周長為

2)在圖2中,當BA=BD=10cm時,△ABD的周長為

3)在圖3中,當DA=DB時,求△ABD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象相交于點,與x軸相交于點B.

填空:n的值為______,k的值為______;

AB為邊作菱形ABCD,使點Cx軸正半軸上,點D在第一象限,求點D的坐標;

觀察反比例函數(shù)的圖象,當時,請直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線x軸交于點,與y軸交于點B,拋物線經(jīng)過點

k的值和拋物線的解析式;

x軸上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點

若以為頂點的四邊形OBNP是平行四邊形時,求m的值.

連接BN,當時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,E、F分別是ABCD的中點,AFDE相交于點G,CEBF相交于點H

(1)求證:四邊形EHFG是平行四邊形;

(2)ABCD應滿足什么條件時,四邊形EHFG是矩形?并說明理由;

(3)ABCD應滿足什么條件時,四邊形EHFG是正方形?(不要說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(﹣1,0),B(3,0)兩點,與y軸交于點C(0,﹣3).

(1)求該拋物線的解析式及頂點M坐標;

(2)求BCM面積與ABC面積的比;

(3)若P是x軸上一個動點,過P作射線PQAC交拋物線于點Q,隨著P點的運動,在拋物線上是否存在這樣的點Q,使以A,P,Q,C為頂點的四邊形為平行四邊形?若存在,請求出Q點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,我們知道,從A地到B地有四條道路,除它們外,可以再修一條從A地到B地的最短道路.解答下列問題:

1)請你在圖上畫出最短線路?

2)你這樣畫的理由是兩點決定一條直線呢,還是兩點之間,線段最短?

3)如果已知三點A、BC在同一條直線上,且AB5BC2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,E、F分別是ABAD延長線上的點,BEDF,在此圖中是否存在兩個全等的三角形,并說明理由;它們能夠由其中一個通過旋轉(zhuǎn)而得到另外一個嗎?簡述旋轉(zhuǎn)過程.

查看答案和解析>>

同步練習冊答案