【題目】如圖1,△ABC中,AD是∠BAC的角平分線,若AB=AC+CD.那么∠ACB 與∠ABC有怎樣的數(shù)量關(guān)系? 小明通過觀察分析,形成了如下解題思路:
如圖2,延長AC到E,使CE=CD,連接DE,由AB=AC+CD,可得AE=AB,又因?yàn)?/span>AD是∠BAC的平分線,可得△ABD≌△AED,進(jìn)一步分析就可以得到∠ACB 與∠ABC的數(shù)量關(guān)系.
(1) 判定△ABD 與△AED 全等的依據(jù)是______________(SSS,SAS,ASA,AAS 從其中選擇一個(gè));
(2)∠ACB 與∠ABC的數(shù)量關(guān)系為:___________________
【答案】 SAS ∠ACB =2∠ABC
【解析】試題分析:(1)根據(jù)已知以及作法可知可以利用SAS判定△ABD 與△AED 全等;
(2)根據(jù)△ABD ≌△AED,可得∠B=∠E,由作法可知CE=CD,從而得∠E=∠CDE,再利用三角形外角的性質(zhì)即可得∠ACB=2∠ABC.
試題解析:(1)延長AC到E,使CE=CD,連接DE,
∵AB=AC+CD,AE=AC+CE,∴AE=AB,
又∵AD是∠BAC的平分線,∴∠BAD=∠CAD,
又AD是公共邊,∴△ABD≌△AED(SAS),
故答案為:SAS;
(2)∵△ABD≌△AED,∴∠B=∠E,
∵CD=CE,∴∠E=∠CDE,
∵∠ACB=∠E+∠CDE,
∴∠ACB=2∠B,
故答案為:∠ACB=2∠B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)求證:無論m為任何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn);
(2)若此函數(shù)圖象與x軸的一個(gè)交點(diǎn)為(-3,0),求此函數(shù)圖象與x軸的另一個(gè)交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,且在上,于,交于點(diǎn).若,則的度數(shù)是( )
A.160°B.150°C.140°D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯(cuò)誤的是( )
A .在函數(shù)y=-x2中,當(dāng)x=0時(shí)y有最大值0
B.在函數(shù)y=2x2中,當(dāng)x>0時(shí)y隨x的增大而增大
C.拋物線y=2x2,y=-x2,中,拋物線y=2x2的開口最小,拋物線y=-x2的開口最大
D.不論a是正數(shù)還是負(fù)數(shù),拋物線y=ax2的頂點(diǎn)都是坐標(biāo)原點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在Rt△ABC中,∠ACB=90°,AB=AC,點(diǎn)D在直線AB上,連接CD,在CD的右側(cè)作CE⊥CD,CD=CE,
(1)如圖1,①點(diǎn)D在AB邊上,直接寫出線段BE和線段AD的關(guān)系;
(2)如圖2,點(diǎn)D在B右側(cè),BD=1,BE=5,求CE的長.
(3)拓展延伸
如圖3,∠DCE=∠DBE=90,CD=CE,BC=,BE=1,請直接寫出線段EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在正方形網(wǎng)格中,若A(0,3),按要求回答下列問題
(1)在圖中建立正確的平面直角坐標(biāo)系;
(2)根據(jù)所建立的坐標(biāo)系,寫出B和C的坐標(biāo);
(3)計(jì)算△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)是第一象限內(nèi)的點(diǎn),直線交軸于點(diǎn),交軸負(fù)半軸于點(diǎn).連接,.
(1)求的面積;
(2)求點(diǎn)的坐標(biāo)和的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 B,C 為圓心,以大于BC 的長為半徑作弧,兩弧相交于兩點(diǎn) M,N;②作直線 MN 交 AB 于點(diǎn) D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為
A.90°B.95°C.105°D.110°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com