【題目】兩個(gè)大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,B,C,E在同一條直線上,連結(jié)DC.

(1)求證:ABE≌△ACD;

(2)求證:DCBE.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】試題分析:(1)根據(jù)等腰直角三角形的性質(zhì),可以得出ABE≌△ACD;

(2)由ABE≌△ACD可以得出B=∠ACD﹣45°,進(jìn)而得出DCB=90°,就可以得出結(jié)論.

證明:(1)∵△ABCAED均為等腰直角三角形,

AB=AC,AE=AD,BAC=EAD=90°.ABC=ACB=45°,

∴∠BAC+CAE=EAD+CAE.

即∠BAE=CAD,

ABEACD中,

,

∴△ABE≌△ACD(SAS),

(2)證明:∵△ABE≌△ACD,

∴∠ACD=ABE=45°,

又∵∠ACB=45°,

∴∠BCD=ACB+ACD=90°,

DCBE.

點(diǎn)睛:此題主要考查了等腰直角三角形的性質(zhì)以及全等三角形的性質(zhì)與判定,根據(jù)等腰三角形的性質(zhì)得出AC=ABAD=AE,利用SAS證全等是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)D、F、E、G都在△ABC的邊上,EF∥AD∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).(請(qǐng)?jiān)谙旅娴目崭裉幪顚懤碛苫驍?shù)學(xué)式)

解:∵EF∥AD,(已知)

∴∠2=      

∵∠1=∠2,(已知)

∴∠1=   (等量代換)

      ,(   

∴∠AGD+   =180°,(兩直線平行,同旁內(nèi)角互補(bǔ))

∵∠CAB=70° ,(已知)

∴∠AGD=   (等式性質(zhì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB為直角邊作等腰RtABC,CAB=90°,AB=AC.

(1)求C點(diǎn)坐標(biāo);

(2)如圖過(guò)C點(diǎn)作CDX軸于D,連接AD,求ADC的度數(shù);

(3)如圖在(1)中,點(diǎn)A在Y軸上運(yùn)動(dòng),以O(shè)A為直角邊作等腰RtOAE,連接EC,交Y軸于F,試問(wèn)A點(diǎn)在運(yùn)動(dòng)過(guò)程中SAOB:SAEF的值是否會(huì)發(fā)生變化?如果沒(méi)有變化,請(qǐng)直接寫出它們的比值   (不需要解答過(guò)程或說(shuō)明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)了全等三角形和等邊三角形的知識(shí)后,張老師出了如下一道題:如圖,點(diǎn)B是線段AC上任意一點(diǎn),分別以AB、BC為邊在AC同一側(cè)作等邊ABD和等邊BCE,連接CDAE分別與BEDB交于點(diǎn)NM,連接MN.求證:ABE≌△DBC

接著張老師又讓學(xué)生分小組進(jìn)行探究:你還能得出什么結(jié)論?

精英小組探究的結(jié)論是:AM=DN

奮斗小組探究的結(jié)論是:EMB≌△CNB

創(chuàng)新小組探究的結(jié)論是:MNAC

1)你認(rèn)為哪一小組探究的結(jié)論是正確的?

2)選擇其中你認(rèn)為正確的一種情形加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtΔABC中,∠C=90,AC=4cm,BC=3cm.動(dòng)點(diǎn)M、N從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A、B移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動(dòng)。連接PM、PN。設(shè)移動(dòng)時(shí)間為t(單位:秒,0<t<2.5).

(1)當(dāng)t為何值時(shí),以A、P、M為頂點(diǎn)的三角形與ΔABC相似?

(2)是否存在某一時(shí)刻t,使PMN 的面積恰好是ABC 面積的;若存在求t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)用24000元購(gòu)入一批空調(diào),然后以每臺(tái)3000元的價(jià)格銷售,因天氣炎熱空調(diào)很快售完;商場(chǎng)又以52000元的價(jià)格再次購(gòu)入該種型號(hào)的空調(diào),數(shù)量是第一次購(gòu)入的2,但購(gòu)入的單價(jià)上調(diào)了200售價(jià)每臺(tái)也上調(diào)了200

1商場(chǎng)第一次購(gòu)入的空調(diào)每臺(tái)進(jìn)價(jià)是多少元?

2商場(chǎng)既要盡快售完第二次購(gòu)入的空調(diào),又要在這兩次空調(diào)銷售中獲得的利潤(rùn)率不低于22%,打算將第二次購(gòu)入的部分空調(diào)按每臺(tái)九五折出售,最多可將多少臺(tái)空調(diào)打折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AD平分∠BAC,

(1)圖①中,已知AF⊥BC , ∠B=500,∠C=600. 求∠DAF的度數(shù).

2)圖②中,請(qǐng)你在直線AD上任意取一點(diǎn)E(不與點(diǎn)A、D重合),畫EF⊥BC,垂足為F.已知∠B=α,∠C=ββa.求∠DEF的度數(shù). (用α、β的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB與CD相交于點(diǎn)O,OE⊥AB,OF⊥CD,OP是∠BOC的平分線.

(1)請(qǐng)寫出圖中所有∠EOC的補(bǔ)角 ____________________;

(2)如果∠POC:∠EOC=2:5.求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直角ABC中,∠C=90°,點(diǎn)D,E分別是邊AC,BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=1,PEB=2,DPE=α.

(1)若點(diǎn)P在線段AB上,如圖①,且∠α=50°,則∠1+2=      

(2)若點(diǎn)P在斜邊AB上運(yùn)動(dòng),如圖②,則∠α、1、2之間的關(guān)系為      ;

(3)如圖③,若點(diǎn)P在斜邊BA的延長(zhǎng)線上運(yùn)動(dòng)(CE<CD),請(qǐng)直接寫出∠α、1、2之間的關(guān)系:      

(4)若點(diǎn)P運(yùn)動(dòng)到ABC形外(只需研究圖④情形),則∠α、1、2之間有何關(guān)系?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案