已知二次函數(shù)
(1)若點在此二次函數(shù)的圖象上,則     (填 “>”、“=”或“<”);
(2)如圖,此二次函數(shù)的圖象經(jīng)過點,正方形ABCD的頂點C、D在x軸上, A、B恰好在二次函數(shù)的圖象上,求圖中陰影部分的面積之和.
(1);(2).

試題分析:
解:(1)由二次函數(shù)圖象知:其圖像關(guān)于 軸對稱,
又∵點在此二次函數(shù)的圖象上,
也在此二次函數(shù)的圖象上,
∵當(dāng) 時函數(shù)是增函數(shù),
.
(2)∵二次函數(shù)的圖象經(jīng)過點(0,-4),
∴m = -4.  
∵四邊形ABCD為正方形,
又∵拋物線和正方形都是軸對稱圖形,且y軸為它們的公共對稱軸,
∴OD=OC,.
設(shè)點B的坐標(biāo)為(n,2n)(n >0),
∵點B在二次函數(shù)的圖象上,
.
解得,(舍負(fù)).
∴點B的坐標(biāo)為(2,4).
=24=8.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

長方體底面周長為50cm,高為10cm.則長方體體積y關(guān)于底面的一條邊長x的函數(shù)解析式是                          .其中x的取值范圍是                 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)y=mx2-6x+1(m是常數(shù)).
⑴求證:不論m為何值,該函數(shù)的圖象都經(jīng)過y軸上的一個定點;
⑵若該函數(shù)的圖象與x軸只有一個交點,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=x2-6x+n的部分圖象如圖所示,則它的對稱軸為 x=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,將其繞坐標(biāo)原點O旋轉(zhuǎn),則旋轉(zhuǎn)后的拋物線的解析式為(    )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某汽車租賃公司擁有20輛汽車.據(jù)統(tǒng)計,當(dāng)每輛車的日租金為400元時,可全部租出;當(dāng)未租出的車將增加1輛,每輛車的日租金每增加50元,;公司平均每日的各項支出共4800元.設(shè)公司每日租出工輛車時,日收益為y元.(日收益=日租金收入一平均每日各項支出)
(1)公司每日租出x輛車時,每輛車的日租金為      元(用含x的代數(shù)式表示);
(2)當(dāng)每日租出多少輛時,租賃公司日收益最大?最大是多少元?
(3)當(dāng)每日租出多少輛時,租賃公司的日收益不盈也不虧?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線AB分別交y軸、x 軸于A、B兩點,OA=2,,拋物線過A、B兩點.

(1)求直線AB和這個拋物線的解析式;
(2)設(shè)拋物線的頂點為D,求△ABD的面積
(3)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當(dāng)t 取何值時,MN的長度l有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知拋物線和直線.我們約定:當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.下列判斷:①當(dāng)x>2時,M=y2;②當(dāng)x<0時,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,則x=1.其中正確的有   (   )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:




0
1
2

y

0
4
6
6
4

由上表可知,下列說法正確的個數(shù)是 (       )
①拋物線與x軸的一個交點為   ②拋物線與軸的交點為
③拋物線的對稱軸是:       ④在對稱軸左側(cè)y隨x增大而增大
A.1    。拢2    。茫3     D.4

查看答案和解析>>

同步練習(xí)冊答案