【題目】如圖1,⊿ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向⊿ABC作等腰Rt⊿ABE和等腰Rt⊿ACF,過點E、F作射線GA的垂線,垂足分別為P、Q。
(1)求證:⊿AEP≌⊿BAG;
(2)試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖2,若連接EF交GA的延長線于H,由(2)中的結(jié)論你能判斷EH與FH的大小關(guān)系嗎?并說明理由;
(4)在(3)的條件下,若BC=AG=10,請直接寫出S⊿AEF= .
【答案】(1)答案見解析;(2)答案見解析;(3)答案見解析;(4)50.
【解析】
(1)根據(jù)等腰Rt△ABE的性質(zhì),求出∠EPA=∠EAB=∠AGB=90°,∠PEA=∠BAG,根據(jù)AAS推出△EPA≌△AGB;(2)根據(jù)全等三角形的性質(zhì)推出EP=AG,同理可得△FQA≌△AGC,即可得出AG=FQ,最后等量代換即可得出答案;(3)求出∠EPH=∠FQH=90°,根據(jù)AAS推出△EPH≌△FQH,即可得出EH與FH的大小關(guān)系;(4)根據(jù)全等三角形△EPH≌△FQH,△EPA≌△AGB,△FQA≌△AGC,推出S△FQAS△AGC,S△FQH=S△EPH,S△EPA=S△AGB,即可求出S△AEF=S△ABC,根據(jù)三角形面積公式求出即可.
解:(1)如圖1,∵∠EAB=90°,EP⊥AG,AG⊥BC,
∴∠EPA=∠EAB=∠AGB=90°,
∴∠PEA+∠EAP=90°,∠EAP+∠BAG=90°,
∴∠PEA=∠BAG,
在△EPA和△AGB中, ,
∴△EPA≌△AGB(AAS),
(2)EP=FQ,
證明:由(1)可得,△EPA≌△AGB,
∴EP=AG,
同理可得,△FQA≌△AGC,
∴AG=FQ,
∴EP=FQ;
(3)EH=FH,
理由:如圖,∵EP⊥AG,FQ⊥AG,
∴∠EPH=∠FQH=90°,
在△EPH和△FQH中, ,
∴△EPH≌△FQH(AAS),
∴EH=FH.
(4)∵△EPH≌△FQH,△EPA≌△AGB,△FQA≌△AGC,
∴S△FQA=S△AGC,S△FQH=S△EPH,S△EPA=S△AGB,
∴S△AEF=S△EPA+S△FQA=S△AGB+S△AGC=S△ABC=×BC×AG=×10×10=50.
故答案為:50.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體的長為15,寬為10,高為20,點B離點C的距離為5。一只螞蟻如果要沿著長方體的表面從點A爬到點B,爬行的最短路程是( )
A.25B.C.35D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點A在反比例函數(shù)y=(k≠0)的圖象上,點D在y軸上,點B、點C在x軸上.若平行四邊形ABCD的面積為10,則k的值是( 。
A. ﹣10 B. ﹣5 C. 5 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點D是射線CB上的一個動點,△ADE是等邊三角形,點F是AB的中點,聯(lián)結(jié)EF.
(1)如圖,當(dāng)點D在線段CB上時,
①求證:△AEF≌△ADC;
②聯(lián)結(jié)BE,設(shè)線段CD=x,線段BE=y,求y關(guān)于x的函數(shù)解析式及定義域;
(2)當(dāng)∠DAB=15°時,求△ADE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三角形的邊長為.
如圖①,正方形的頂點、在邊上,頂點在邊上,在正三角形及其內(nèi)部,以點為位似中心,作正方形的位似正方形,且使正方形的面積最大(不要求寫作法);
求中作出的正方形的邊長;
如圖②,在正三角形中放入正方形和正方形,使得、在邊上,點、分別在邊、上,求這兩個正方形面積和的最大值和最小值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的大小;
(2)若CD=3,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的弦AD∥BC,過點D的切線交BC的延長線于點E,AC∥DE交BD于點H,DO及延長線分別交AC、BC于點G、F.
(1)求證:DF垂直平分AC;
(2)求證:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:已知,如圖1,在△ABC中,∠ACB=90°,AC=6,BC=8,D是線段AB上一個動點.
(1)畫出點D關(guān)于直線AC、BC的對稱點M、N;
(2)在(1)的條件下,連接MN
①求證:M、C、N三點在同一條直線上;
②求MN的最小值.
應(yīng)用:已知,如圖2,在△ABC中,∠C=30°,AC=CB,AB=3,△ABC的面積為S,點D、E、F分別是AB、AC、BC上三個動點,請用含S的代數(shù)式直接表示△DEF的周長的最小值,并在圖2中畫出符合題意的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,則下列個代數(shù)式:,,,,,中,其值為正的式子的個數(shù)是( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com