【題目】如圖,已知點,分別是的邊和延長線上的點,作的平分線,若.
(1)求證:是等腰三角形;
(2)作的平分線交于點,若,求的度數.
【答案】(1)證明過程見解析;(2)70°
【解析】
(1)根據角平分線的性質得到∠DAF=∠FAC,再結合平行線的性質即可得出答案;
(2)根據角平分線的相知得出∠ACG=∠GCE,再根據等腰三角形的性質得出∠BCA和∠ACG,最后結合平行線的性質即可得出答案.
(1)證明:∵AF是∠DAC的角平分線
∴∠DAF=∠FAC
又AF∥BC
∴∠FAC=∠ACB,∠DAF=∠B
∴∠ACB=∠B
∴△ABC是等腰三角形
(2)解:∵CG平分∠ACE
∴∠ACG=∠GCE
又∠B=40°,△ABC是等腰三角形
∴∠BCA =40°
∴∠ACE=180°-∠BCA=140°
∠ACG=∠GCE=∠ACE=70°
∴∠BCG=∠BCA+∠ACG=110°
又AF∥BC
∴∠AGC=180°-∠BCG=70°
科目:初中數學 來源: 題型:
【題目】如圖,△ACE是以平行四邊行ABCD的對角線AC為邊的等邊三角形,點C與點E關于x軸對稱.若E點的坐標是(10,-4 ),則D點的坐標是( )
A.(6,0)B.(6,0)C.(8,0)D.(8,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線與x軸交于A,B兩點(A在B的左側),與y軸交于點C,頂點為D.
(1)請直接寫出點A,C,D的坐標;
(2)如圖(1),在x軸上找一點E,使得△CDE的周長最小,求點E的坐標;
(3)如圖(2),F為直線AC上的動點,在拋物線上是否存在點P,使得△AFP為等腰直角三角形?若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c圖象的一部分,其對稱軸為x=-1,且過點(-3,0).下列說法:①abc<0;②2a-b=0;③4a+2b+c<0;④3a+c=0;則其中說法正確的是( ).
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線與軸交于,兩點,與軸交于點,點和點的坐標分別為,拋物線的對稱軸為,為拋物線的頂點.
求拋物線的解析式.
拋物線的對稱軸上是否存在一點,使為等腰三角形?若存在,寫出點點的坐標,若不存在,說明理由.
點為線段上一動點,過點作軸的垂線,與拋物線交于點,求四邊形面積的最大值,以及此時點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y=(k>0)與矩形OABC在第一象限相交于D、E兩點,OA=2,OC=4,連接OD、OE、DE.記△OAD、△OCE的面積分別為S、S .
(1)①點B的坐標為 ;②S S(填“>”、“<”、“=”);
(2)當點D為線段AB的中點時,求k的值及點E的坐標;
(3)當S+S=2時,試判斷△ODE的形狀,并求△ODE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本小題滿分10分 )在端午節(jié)前夕三位同學到某超市調研一種進價為2元的粽子的售銷情況,請跟據小麗提供的信息,解答小華和小明提出的問題
小麗:每個定價3元,每天能賣出500個,而且,這種粽子每上漲0.1元,其售銷量將減小10個
小華:照你所說,如果實現每天800元的售銷利潤,那該如何定價?莫忘了物價局規(guī)定售價不能超過進價的240%喲
小明:800元售銷利潤是不是最多的呢?如果不是,那該如何定價,才會使每天的利潤最大?.
(1)小華的問題解答:
(2)小明的問題解答:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com